A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineering of targeting antioxidant polypeptide nanopolyplexes for the treatment of acute lung injury. | LitMetric

Engineering of targeting antioxidant polypeptide nanopolyplexes for the treatment of acute lung injury.

Int J Biol Macromol

Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China. Electronic address:

Published: January 2024

The pathogenesis of acute lung injury (ALI) involves various mechanisms, such as oxidative stress, inflammation, and epithelial cell apoptosis. However, current drug therapies face limitations due to issues like systemic distribution, drug degradation in vivo, and hydrophobicity. To address these challenges, we developed a pH-responsive nano-drug delivery system for delivering antioxidant peptides to treat ALI. In this study, we utilized low molecular weight chitosan (LMWC) and hyaluronic acid (HA) as carrier materials. LMWC carries a positive charge, while HA carries a negative charge. By stirring the two together, the electrostatic adsorption between LMWC and HA yielded aggregated drug carriers. To specifically target the antioxidant drug WNWAD to lung lesions and enhance therapeutic outcomes for ALI, we created a targeted drug delivery system known as HA/LMWC@WNWAD (NPs) through a 12-h stirring process. In our research, we characterized the particle size and drug release of NPs. Additionally, we assessed the targeting ability of NPs. Lastly, we evaluated the improvement of lung injury at the cellular and animal levels to investigate the therapeutic mechanism of this drug targeting delivery system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.127872DOI Listing

Publication Analysis

Top Keywords

lung injury
12
delivery system
12
acute lung
8
drug
7
engineering targeting
4
targeting antioxidant
4
antioxidant polypeptide
4
polypeptide nanopolyplexes
4
nanopolyplexes treatment
4
treatment acute
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!