Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Memristor with low-power, high density, and scalability fulfills the requirements of the applications of the new computing system beyond Moore's law. However, there are still nonideal device characteristics observed in the memristor to be solved. The important observation is that retention and speed are correlated parameters of memristor with trade off against each other. The delicately modulating distribution and trapping level of defects in electron migration-based memristor is expected to provide a compromise method to address the contradictory issue of improving both switching speed and retention capability. Here, high-performance memristor based on the structure of ITO/Ni single-atoms (NiSAs/N-C)/Polyvinyl pyrrolidone (PVP)/Au is reported. By utilizing well-distributed trapping sites , small tunneling barriers/distance and high charging energy, the memristor with an ultrafast switching speed of 100 ns, ultralong retention capability of 10 s, a low set voltage (V ) of ≈0.7 V, a substantial ON/OFF ration of 10 , and low spatial variation in cycle-to-cycle (500 cycles) and device-to-device characteristics (128 devices) is demonstrated. On the premise of preserving the strengths of a fast switching speed, this memristor exhibits ultralong retention capability comparable to the commercialized flash memory. Finally, a memristor ratioed logic-based combinational memristor array to realize the one-bit full adder is further implemented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202308153 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!