Characterization and enrichment of spermatogonial stem cells of common carp (Cyprinus carpio).

Theriogenology

Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, 01049-010, Brazil. Electronic address:

Published: January 2024

Spermatogenesis is a systematically organized process that ensures uninterrupted sperm production in which the spermatogonial stem cells (SSCs) play a crucial role. However, the existing absence of teleost-specific molecular markers for SSCs presents a notable challenge. Herein we characterized phenotypically the spermatogonial stem cells using specific molecular markers and transmission electron microscopy. Moreover, we also describe a simple method to suppress common carp spermatogenesis using the combination of Busulfan and thermo-chemical treatment, and finally, we isolate and enrich the undifferentiated spermatogonial fraction. Our results showed that C-kit, GFRα1, and POU2 proteins were expressed by germ cells, meanwhile, undifferentiated spermatogonial populations preferentially expressed GFRα1 and POU2. Moreover, the combination of high temperature (35 °C) and Busulfan (40 mg/kg/BW) effectively suppressed the spermatogenesis of common carp males. Additionally, the amh expression analysis showed differences between the control (26 °C) when compared to 35 °C with a single or two Busulfan doses, confirming that the testes were depleted by the association of Busulfan at high temperatures. In an attempt to isolate the undifferentiated spermatogonial fraction, we used the Percoll discontinuous density gradient. Thus, we successfully dissociated the carp whole testes in different cellular fractions; subsequently, we isolated and enriched the undifferentiated spermatogonial population. Therefore, our results suggest that probably both GFRα-1 and POU2 are highly conserved factors expressed in common carp germinative epithelium and that these molecules were well conserved along the evolutionary process. Furthermore, the enriched undifferentiated spermatogonial population developed here can be used in further germ cell transplantation experiments to preserve and propagate valued and endangered fish species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.theriogenology.2023.10.021DOI Listing

Publication Analysis

Top Keywords

undifferentiated spermatogonial
20
common carp
16
spermatogonial stem
12
stem cells
12
spermatogonial
8
molecular markers
8
spermatogonial fraction
8
gfrα1 pou2
8
enriched undifferentiated
8
spermatogonial population
8

Similar Publications

In the germ line and during early embryogenesis, DNA methylation (DNAme) undergoes global erasure and re-establishment to support germ cell and embryonic development. While DNAme acquisition during male germ cell development is essential for setting genomic DNA methylation imprints, other intergenerational roles for paternal DNAme in defining embryonic chromatin are unknown. Through conditional gene deletion of the de novo DNA methyltransferases Dnmt3a and/or Dnmt3b, we observe that DNMT3A primarily safeguards against DNA hypomethylation in undifferentiated spermatogonia, while DNMT3B catalyzes de novo DNAme during spermatogonial differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • Cryptorchidism is a common congenital condition in newborn males where one or both testes fail to descend into the scrotum, leading to potential infertility due to azoospermia.
  • Research using a mouse model of surgically induced cryptorchidism revealed changes in the epigenetic markers H3K27me3 and H3K9me3 in spermatogonial cells, with a specific loss of H3K27me3 linked to gene activation related to development and apoptosis.
  • The study indicates that elevated temperatures may enhance the activity of enzymes that demethylate H3K27, contributing to mRNA dysregulation and potentially impacting spermatogonial function.
View Article and Find Full Text PDF

SDF-1/CXCR4 axis maintains porcine prospermatogonia undifferentiated state through regulation of transcription suppressor PLZF.

Theriogenology

March 2025

Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:

Prospermatogonia (ProSGs), the progenitors of spermatogonial stem cells in neonatal testes, undergo critical migration to the testicular microenvironment-a fundamental process for testicular development and subsequent spermatogenic capacity. The SDF-1/CXCR4 chemokine axis serves as an essential molecular guidance mechanism, directing ProSGs toward the basal membrane of seminiferous tubules. Nevertheless, the precise molecular mechanisms governing this axis remain incompletely understood.

View Article and Find Full Text PDF

Background: Exposure to endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), disrupts reproduction across generations. Germ cell epigenetic alterations are proposed to bridge transgenerational reproductive defects resulting from EDCs. Previously, we have shown that prenatal exposure to environmentally relevant doses of BPA or its substitute, BPS, caused transgenerationally maintained reproductive impairments associated with neonatal spermatogonial epigenetic changes in male mice.

View Article and Find Full Text PDF

Spermatogonial stem cells (SSCs) sustain and modulate spermatogenesis through intricate signaling pathways and transcription factors. Promyelocytic leukemia zinc-finger (, also known as ) has been identified as a critical transcription factor influencing various signaling and differentiation pathways. plays a pivotal role in regulating the differentiation properties of SSCs and is essential for the proper maintenance of spermatogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!