NiFe-PANI composites synthesized by electrodeposition for enhanced photocatalytic degradation of diclofenac sodium from wastewater.

J Environ Manage

Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India; Korea University, Seoul 02841, Republic of Korea. Electronic address:

Published: January 2024

A simple inexpensive approach was used to synthesize NiFe-PANI nanocomposites and used for photodegradation of diclofenac sodium (DCF) in water sources. Morphological, optical, structural, and catalytic properties of the nanocomposites were investigated using X-ray diffraction (XRD) to confirm the cubic structure of NiFe nanoparticles and Fourier-transform infrared spectroscopy (FTIR) that revealed the presence of NiFe and PANI, scanning electron microscopy (SEM) showed the uniform distribution of NiFe nanoparticles onto the surface of PANI, Energy-Dispersive X-ray spectroscopy (EDX) was utilized to validate the composition of the obtained Permalloy NiFe-PANI nanocomposites, optical properties confirmed the decrease of E band gap from 2.62 to 2.51 eV by the addition of NiFe. The NiFe-PANI composite showed superior photocatalytic efficiency in degrading DCF, achieving 82.53% degradation in 15 min and 97.89% in 60 min. This was significantly higher than the PANI alone, which achieved 62.72 and 93.48% degradation in the same time intervals respectively. The results indicated that the photocatalytic efficiency remained consistent, with no observable decrease, even after five cycles of recycling. The NiFe-PANI catalyst served as an efficient and cost-effective photocatalyst for DCF degradation, and the study holds promise for the photocatalytic removal of other organic pollutants from water and wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119487DOI Listing

Publication Analysis

Top Keywords

diclofenac sodium
8
nife-pani nanocomposites
8
nife nanoparticles
8
photocatalytic efficiency
8
nife-pani
5
nife-pani composites
4
composites synthesized
4
synthesized electrodeposition
4
electrodeposition enhanced
4
photocatalytic
4

Similar Publications

The biotransformation of drugs by enzymes from the human microbiome can produce active or inactive products, impacting the bioactivity and function of these drugs inside the human host. However, understanding the biotransformation reactions of drug molecules catalyzed by bacterial enzymes in human microbiota is still limited. Hence, to characterize drug utilization capabilities across all the microbial phyla inside the human gut, we have used a knowledge-based approach to develop HgutMgene-Miner software which predicts xenobiotic metabolizing enzymes (XMEs) through genome mining.

View Article and Find Full Text PDF

: The proton-coupled amino acid transporter (PAT1) is an intestinal absorptive solute carrier responsible for the oral bioavailability of some GABA-mimetic drug substances such as vigabatrin and gaboxadol. In the present work, we investigate if non-steroidal anti-inflammatory drug substances (NSAIDs) interact with substrate transport via human (h)PAT1. : The transport of substrates via hPAT1 was investigated in Caco-2 cells using radiolabeled substrate uptake and in oocytes injected with , measuring induced currents using the two-electrode voltage clamp technique.

View Article and Find Full Text PDF

Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices.

View Article and Find Full Text PDF

Atopic dermatitis (AD) or eczema is an important inflammatory chronic skin disease that brings many complications in its management and treatment. Although several chemical agents are used for treatment, the search for better anti-inflammatory and antibacterial agents of plant origin has been ongoing, since natural compounds, it is commonly believed, are less dangerous than synthetic ones. Therefore, the present study explored a medicinal plant- (L.

View Article and Find Full Text PDF

The effects of Pistacia atlantica Desf. fruit oil on primary knee osteoarthritis: A randomized controlled clinical trial.

J Ethnopharmacol

January 2025

Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol. Iran. Electronic address:

Ethnopharmacological Relevance: Pistacia atlantica Desf. (Baneh) is a native tree in many areas of Iran such as Zagros mountains and Sistan va Baluchestan Province. It is famous mostly due to its oleo-gum resin and there are many studies on its effects on gastrointestinal disorders and musculoskeletal problems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!