A key feature of advanced motion processing in the primate dorsal stream is the existence of pattern cells-specialized cortical neurons that integrate local motion signals into pattern-invariant representations of global direction. Pattern cells have also been reported in rodent visual cortex, but it is unknown whether the tuning of these neurons results from truly integrative, nonlinear mechanisms or trivially arises from linear receptive fields (RFs) with a peculiar geometry. Here, we show that pattern cells in rat primary (V1) and lateromedial (LM) visual cortex process motion direction in a way that cannot be explained by the linear spatiotemporal structure of their RFs. Instead, their tuning properties are consistent with and well explained by those of units in a state-of-the-art neural network model of the dorsal stream. This suggests that similar cortical processes underlay motion representation in primates and rodents. The latter could thus serve as powerful model systems to unravel the underlying circuit-level mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631736 | PMC |
http://dx.doi.org/10.1126/sciadv.adh4690 | DOI Listing |
Sci Transl Med
January 2025
University of Strasbourg, INSERM, Strasbourg Translational Neuroscience & Psychiatry STEP-CRBS, UMR-S 1329, 67000 Strasbourg, France.
Sleep alterations have been described in several neurodegenerative diseases yet are currently poorly characterized in amyotrophic lateral sclerosis (ALS). This study investigates sleep macroarchitecture and related hypothalamic signaling disruptions in ALS. Using polysomnography, we found that both patients with ALS as well as asymptomatic and mutation carriers exhibited increased wakefulness and reduced non-rapid eye movement sleep.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Physics, Princeton University, Princeton, NJ 08544, USA.
Introducing superconductivity in topological materials can lead to innovative electronic phases and device functionalities. Here, we present a unique strategy for quantum engineering of superconducting junctions in moiré materials through direct, on-chip, and fully encapsulated 2D crystal growth. We achieve robust and designable superconductivity in Pd-metalized twisted bilayer molybdenum ditelluride (MoTe) and observe anomalous superconducting effects in high-quality junctions across ~20 moiré cells.
View Article and Find Full Text PDFElife
January 2025
Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
The inferior colliculus (IC) has traditionally been regarded as an important relay in the auditory pathway, primarily involved in relaying auditory information from the brainstem to the thalamus. However, this study uncovers the multifaceted role of the IC in bridging auditory processing, sensory prediction, and reward prediction. Through extracellular recordings in monkeys engaged in a sound duration-based deviation detection task, we observed a 'climbing effect' in neuronal firing rates, indicative of an enhanced response over sound sequences linked to sensory prediction rather than reward anticipation.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany.
The characterization of phenotypes in cells or organisms from microscopy data largely depends on differences in the spatial distribution of image intensity. Multiple methods exist for quantifying the intensity distribution - or image texture - across objects in natural images. However, many of these texture extraction methods do not directly adapt to 3D microscopy data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!