Tiny ocean plankton (picoplankton) are fundamental for the functioning of the biosphere, but the ecological mechanisms shaping their biogeography were partially understood. Comprehending whether these microorganisms are structured by niche versus neutral processes is relevant in the context of global change. We investigate the ecological processes (selection, dispersal, and drift) structuring global-ocean picoplanktonic communities inhabiting the epipelagic (0 to 200 meters), mesopelagic (200 to 1000 meters), and bathypelagic (1000 to 4000 meters) zones. We found that selection decreased, while dispersal limitation increased with depth, possibly due to differences in habitat heterogeneity and dispersal barriers such as water masses and bottom topography. Picoplankton β-diversity positively correlated with environmental heterogeneity and water mass variability, but this relationship tended to be weaker for eukaryotes than for prokaryotes. Community patterns were more pronounced in the Mediterranean Sea, probably because of its cross-basin environmental heterogeneity and deep-water isolation. We conclude that different combinations of ecological mechanisms shape the biogeography of the ocean microbiome across depths.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631730 | PMC |
http://dx.doi.org/10.1126/sciadv.adg9763 | DOI Listing |
AoB Plants
January 2025
Department of Biology, Loyola University Chicago 1032 W. Sheridan Rd. Chicago, IL 60660, United States.
The shift from outcrossing to predominantly selfing is one of the most common transitions in plant evolution. This evolutionary shift has received considerable attention from biologists; however, this work has almost exclusively been focused on animal-pollinated systems. Despite the seminal ecological and economic importance of wind-pollinated species, the mechanisms controlling the degree of outcrossing in wind-pollinated taxa remain poorly understood.
View Article and Find Full Text PDFPlant Commun
January 2025
State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University; Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Plant Germplasm Resources Conservation and Utilization, Zhejiang A&F University; Hangzhou 311300, China; Provincial Key Laboratory for Non-wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:
Convergent and parallel evolution occur more frequently than previously thought. Here, we focus on the evolutionary adaptations of angiosperms to sub-zero temperatures. We begin by introducing the research history of convergent and parallel evolution, defining all independent similarities as convergent evolution.
View Article and Find Full Text PDFPers Soc Psychol Bull
January 2025
The University of Chicago, IL, USA.
Relational mobility is a socio-ecological factor that shapes our interpersonal behaviors. Across four studies involving three countries ( = 2,874), we tested the hypothesis that low relational mobility increases sensitivity to social rejection, which in turn fosters decision avoidance and difficulty in interpersonal situations (i.e.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055 China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China.
Controlling runoff pollution is crucial to improving ecological environments in the context of urbanization and climate change. However, a significant research gap remains in the treatment and reuse of roof runoff, particularly during the first flush. To address this, a novel dry-wet polymorphic constructed wetland (DWP-CW) system was developed to purify first flush runoff efficiently and reliably.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
Estuarine ecosystems have been threatened by increasing anthropogenic and natural pressures, yet the integral understanding of their stability characteristics of microbial communities at taxonomic, habitat, and spatial scales remains limited. In this study, the Mulan River estuary in southeastern China was selected to compare the stability characteristics of bacterial and protistan communities in water and sediments over three hydrological periods, and to explore their spatial variations along the estuarine continuum from river to ocean. The potential driving mechanisms of stability characteristics were also explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!