Tilapia Lake Virus (TiLV) is a disease that affects tilapia fish, causing a high rate of sudden death at any stage in their life cycle. Unfortunately, there are currently no effective antiviral drugs or vaccines to prevent or control the progression of this disease. Researchers have discovered that the CRM1 protein plays a critical function in the development and spreading of animal viruses. By inhibiting CRM1, the virus's spread in commercial fish farms can be suppressed. With this in mind, this study intended to identify potential antiviral drugs from two different tropical mangrove plants from tropical regions: Heritiera fomes and Ceriops candolleana. To identify promising compounds that target the CRM1 protein, a computer-aided drug discovery approach is employed containing molecular docking, ADME (absorption, distribution, metabolism and excretion) analysis, toxicity assessment as well as molecular dynamics (MD) simulation. To estimate binding affinities of all phytochemicals, molecular docking is used and the top three candidate compounds with the highest docking scores were selected, which are CID107876 (-8.3 Kcal/mol), CID12795736 (-8.2 Kcal/mol), and CID12303662 (-7.9 Kcal/mol). We also evaluated the ADME and toxicity properties of these compounds. Finally, MD simulation was conducted to analyze the stability of the protein-ligand complex structures and confirm the suitability of these compounds. The computational study demonstrated that the phytochemicals found in H. fomes and C. candolleana could potentially serve as important inhibitors of TiLV, offering practical utility. However, further in vivo investigations are necessary to investigate and potentially confirm the effectiveness of these compounds as antiviral drugs against the virus TiLV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631680PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287944PLOS

Publication Analysis

Top Keywords

antiviral drugs
12
tilapia lake
8
lake virus
8
virus tilv
8
crm1 protein
8
molecular docking
8
compounds
5
identification natural
4
antiviral
4
natural antiviral
4

Similar Publications

Background: On demand, topical PrEP is desired by those preferring episodic, nonsystemic PrEP. PC-1005 gel (MIV-150, zinc, and carrageenan) exhibits in vitro antiviral HIV-1, human papillomavirus (HPV), and herpes simplex virus type 2 (HSV-2) activity, attractive for a multipurpose prevention technology candidate. We evaluated the safety, pharmacokinetics, and antiviral effect of rectally applied PC-1005.

View Article and Find Full Text PDF

Introduction: Efforts to improve pre-exposure prophylaxis (PrEP) uptake among gay men, transgender women, and Black cisgender women are evident across the United States, responding to epidemiologic data showing a disproportionate HIV burden in these communities. However, transgender men and other transmasculine people who have sex with men (TMSM)-those assigned female at birth who identify otherwise and have sex with cisgender men-are often excluded from these statistics. This community has unique vulnerabilities and prevention needs.

View Article and Find Full Text PDF

Peptide-based therapeutics are gaining attention for their potential to target various viral and host cell factors. One notable example is Pep19-2.5 (Aspidasept), a synthetic anti-lipopolysaccharide peptide that binds to heparan sulfate proteoglycans (HSPGs) and has demonstrated inhibitory effects against certain bacteria and enveloped viruses.

View Article and Find Full Text PDF

This study extends previous research, particularly focusing on patented scientific objects No. ID: PL 240 353 B1, investigating the physicochemical properties of the methyl 3-azido- and 3-amino-2,3-dideoxysaccharides with a nucleoside scaffold similar to 3'-azidothymidine (AZT). The study utilizes multiwavelength spectrophotometric and potentiometric methods to evaluate the ionization of the saccharide units in aqueous solutions.

View Article and Find Full Text PDF

Background: Cytomegalovirus (CMV) is a significant cause of morbidity and death in solid organ transplant recipients. Pre-emptive treatment of patients with CMV viraemia using antiviral agents has been suggested as an alternative to routine prophylaxis to prevent CMV disease. This is an update of a Cochrane review first published in 2006 and updated in 2013.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!