Defining perceptual similarity metrics for odorant comparisons is crucial to understanding the mechanism of olfactory perception. Current methods in olfaction rely on molecular physicochemical features or discrete verbal descriptors (floral, burnt, etc.) to approximate perceptual (dis)similarity between odorants. However, structural or verbal descriptors alone are limited in modeling complex nuances of odor perception. While structural features inadequately characterize odor perception, language-based discrete descriptors lack the granularity needed to model a continuous perception space. We introduce data-driven approaches to perceptual metrics learning (PMeL) based on two key insights: a) by combining physicochemical features with the user's perceptual feedback, we can leverage both structural and perceptual attributes of odors to define dissimilarity, and b) instead of discrete labels, user's perceptual feedback can be gathered as relative similarity comparisons, such as "Does molecule-A smell more like molecule-B, or molecule-C?" These triplet comparisons are easier even for non-experts users and offer a more effective representation of the continuous perception space. Experimental results on several defined tasks show the effectiveness of our approach in evaluating perceptual dissimilarity between odorants. Finally, we investigate how closely our model, trained on non-expert feedback, aligns with the expert's similarity judgments. Our effort aims to reduce reliance on expert annotations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631653 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291767 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!