Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this article, an adaptive neural tracking control based on saturation disturbance observer (SDO) and command filter is studied for multiple-input-multiple-output nonlinear systems with time-varying constraints and system uncertainties. By employing neural networks (NNs), the system uncertainties are approximated. The SDO is proposed to estimate the composited disturbances which consist of NN approximation errors and the external bounded disturbances. Compared with the traditional disturbance observer, the SDO can reduce the estimation error to some extent. The control requirements are achieved based on the multiconstraints which contain three layers: 1) prescribed performance functions (PPFs); 2) actual constraints; and 3) virtual constraints. The errors remain within the prescribed small neighborhood of zero by using the PPFs, the error constraints ensure that the time-varying constraints are never violated even if the PPFs are not available, and the virtual constraints are applied in a new time-varying barrier Lyapunov function (TVBLF) to design virtual controllers and controller to solve the singularity problem of the traditional TVBLF. In addition, the command filter is introduced to solve the problem of "explosion of complexity." Finally, a numerical simulation verifies the effectiveness of the proposed scheme for a flight control of unmanned aerial vehicle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2023.3325456 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!