Sponges are increasingly recognized as an ecologically important taxon on coral reefs, representing significant biomass and biodiversity where sponges have replaced scleractinian corals. Most sponge species can be divided into two symbiotic states based on symbiont community structure and abundance (i.e., the microbiome), and are characterized as high microbial abundance (HMA) or low microbial abundance (LMA) sponges. Across the Caribbean, sponge species of the HMA or LMA symbiotic states differ in metabolic capacity, as well as their trophic ecology. A metagenetic analysis of symbiont 16 S rRNA and metagenomes showed that HMA sponge microbiomes are more functionally diverse than LMA microbiomes, offer greater metabolic functional capacity and redundancy, and encode for the biosynthesis of secondary metabolites. Stable isotope analyses showed that HMA and LMA sponges primarily consume dissolved organic matter (DOM) derived from external autotrophic sources, or live particulate organic matter (POM) in the form of bacterioplankton, respectively, resulting in a low degree of resource competition between these symbiont states. As many coral reefs have undergone phase shifts from coral- to macroalgal-dominated reefs, the role of DOM, and the potential for future declines in POM due to decreased picoplankton productivity, may result in an increased abundance of chemically defended HMA sponges on tropical coral reefs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723761PMC
http://dx.doi.org/10.1038/s43705-022-00196-3DOI Listing

Publication Analysis

Top Keywords

coral reefs
12
metabolic capacity
8
trophic ecology
8
sponge species
8
symbiotic states
8
microbial abundance
8
lma sponges
8
hma lma
8
organic matter
8
sponges
6

Similar Publications

Light and dark biofilm adaptation impacts larval settlement in diverse coral species.

Environ Microbiome

January 2025

Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.

Background: Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments.

View Article and Find Full Text PDF

Structure and assembly mechanisms of the microbial community on an artificial reef surface, Fangchenggang, China.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.

The construction of artificial reefs (ARs) is an effective way to restore habitats and increase and breed fishery resources in marine ranches. However, studies on the impacts of ARs on the structure, function, and assembly patterns of the bacterial community (BC), which is important in biogeochemical cycles, are lacking. The compositions, diversities, assembly patterns, predicted functions, and key environmental factors of the attached and free-living microbial communities in five-year ARs (O-ARs) and one-year ARs (N-ARs) in Fangchenggang, China, were analyzed via 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Turbid coral reefs are characterised by high turbidity and sedimentation. However, the impacts of terrestrial sediment inputs on coral communities, as well as their interactions with reef-derived carbonate sediment, remain poorly understood. Here we examine the physical properties of mixed carbonate-siliciclastic benthic sediments from six turbid reefs in southern Singapore, which exhibit coral covers ranging from 15 % to 65 %.

View Article and Find Full Text PDF

Effects of protection on large-bodied reef fishes in the western Indian Ocean.

Conserv Biol

January 2025

UMR ENTROPIE (IRD, UR, CNRS, IFREMER, UNC), CS 41096, La Reunion, France.

Predatory and large-bodied coral reef fishes have fundamental roles in the functioning and biodiversity of coral reef ecosystems, but their populations are declining, largely due to overexploitation in fisheries. These fishes include sharks, groupers, Humphead wrasse (Cheilinus undulatus), and Green Humphead parrotfish (Bolbometopon muricatum). In the western Indian Ocean, this situation is exacerbated by limited population data on these fishes, including from conventional visual census methods, which limit the surface area surveyed.

View Article and Find Full Text PDF

New technology has opened opportunities for research and exploration of deep-water ecosystems, highlighting deep-sea coral reefs as a rich source of novel bioactive natural products. During our ongoing investigation of the chemodiversity of the Irish deep sea and the soft coral we report 12 unreported cadinene-like functionalized sesquiterpenes, anthoteibinenes F-Q. The metabolites were isolated using both bioassay- and H NMR-guided approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!