Fungal symbionts can buffer plants from environmental extremes and may affect host capacities to acclimate, adapt, or redistribute under environmental change; however, the distributions of fungal symbionts along abiotic gradients are poorly described. Fungal mutualists should be the most beneficial in abiotically stressful environments, and the structure of networks of plant-fungal interactions likely shift along gradients, even when fungal community composition does not track environmental stress. We sampled 634 unique combinations of fungal endophytes and mycorrhizal fungi, grass species identities, and sampling locations from 66 sites across six replicate altitudinal gradients in the western Colorado Rocky Mountains. The diversity and composition of leaf endophytic, root endophytic, and arbuscular mycorrhizal (AM) fungal guilds and the overall abundance of fungal functional groups (pathogens, saprotrophs, mutualists) tracked grass host identity more closely than elevation. Network structures of root endophytes become more nested and less specialized at higher elevations, but network structures of other fungal guilds did not vary with elevation. Overall, grass species identity had overriding influence on the diversity and composition of above- and belowground fungal endophytes and AM fungi, despite large environmental variation. Therefore, in our system climate change may rarely directly affect fungal symbionts. Instead, fungal symbiont distributions will most likely track the range dynamics of host grasses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723685PMC
http://dx.doi.org/10.1038/s43705-022-00107-6DOI Listing

Publication Analysis

Top Keywords

grass species
12
fungal symbionts
12
fungal
11
species identity
8
fungal endophytes
8
diversity composition
8
fungal guilds
8
network structures
8
grass
4
identity shapes
4

Similar Publications

Phenomic selection based on parental spectra can be used to predict GCA and SCA in a sparse factorial design. Prediction approaches such as genomic selection can be game changers in hybrid breeding. They allow predicting the genetic values of hybrids without the need for their physical production.

View Article and Find Full Text PDF

Time-Course Transcriptomics Analysis Reveals Molecular Mechanisms of Salt-Tolerant and Salt-Sensitive Cotton Cultivars in Response to Salt Stress.

Int J Mol Sci

January 2025

Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China.

Salt stress is an environmental factor that limits plant seed germination, growth, and survival. We performed a comparative RNA sequencing transcriptome analysis during germination of the seeds from two cultivars with contrasting salt tolerance responses. A transcriptomic comparison between salt-tolerant cotton cv Jin-mian 25 and salt-sensitive cotton cv Su-mian 3 revealed both similar and differential expression patterns between the two genotypes during salt stress.

View Article and Find Full Text PDF

Wheat is one of the most extensively grown crops in the world; however, its productivity is reduced due to salinity. This study focused on millimeter wave (MMW) irradiation to clarify the salt-stress tolerance mechanism in wheat. In the present study, wheat-root growth, which was suppressed to 77.

View Article and Find Full Text PDF

Fumonisins, a class of mycotoxins predominantly produced by species, represent a major threat to food safety and public health due to their widespread occurrence in staple crops including peanuts, wine, rice, sorghum, and mainly in maize and maize-based food and feed products. Although fumonisins occur in different groups, the fumonisin B series, particularly fumonisin B1 (FB1) and fumonisin B2 (FB2), are the most prevalent and toxic in this group of mycotoxins and are of public health significance due to the many debilitating human and animal diseases and mycotoxicosis they cause and their classification as by the International Agency for Research on Cancer (IARC) as a class 2B carcinogen (probable human carcinogen). This has made them one of the most regulated mycotoxins, with stringent regulatory limits on their levels in food and feeds destined for human and animal consumption, especially maize and maize-based products.

View Article and Find Full Text PDF

Salt stress represents a significant abiotic stress factor that impedes the growth of rice. Nano-silicon has the potential to enhance rice growth and salt tolerance. In this experiment, the rice variety 9311 was employed as the test material to simulate salt stress via hydroponics, with the objective of investigating the mitigation effect of foliar application of nano-silicon on rice seedlings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!