AI Article Synopsis

  • * Experiments reveal that apremilast lowers levels of specific mRNA and proteins that contribute to fibrosis, such as type I collagen and CCN2, especially in fibroblasts from SSc patients compared to healthy individuals.
  • * In a mouse model, apremilast was effective in reducing dermal fibrosis progression and potentially works by influencing T cells, suggesting it could be a viable treatment for SSc-related skin fibrosis.

Article Abstract

Phosphodiesterase (PDE) 4 inhibitors have been reported to suppress the progression of dermal fibrosis in patients with systemic sclerosis (SSc); however, the precise mechanisms remain to be elucidated. Therefore, we conducted experiments focusing on the antifibrotic and anti-inflammatory effects of apremilast using dermal fibroblasts derived from patients with SSc and an SSc mouse model. Dermal fibroblasts derived from healthy controls and patients with SSc were incubated with apremilast in the presence or absence of 10 ng/ml transforming growth factor (TGF)-β1 for the measurement of intracellular cAMP levels and evaluation of mRNA and protein expression. A bleomycin-induced dermal fibrosis mouse model was used to evaluate the inhibitory effects of apremilast on the progression of dermal fibrosis. Intracellular cAMP levels were significantly reduced in dermal fibroblasts derived from patients with SSc compared with those derived from healthy controls. Apremilast reduced the mRNA expression of profibrotic markers and the protein expression of type I collagen and Cellular Communication Network Factor 2 (CCN2) in dermal fibroblasts. Additionally, apremilast inhibited the progression of dermal fibrosis in mice, partly by acting on T cells. These results suggest that apremilast may be a potential candidate for treating dermal fibrosis in SSc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632419PMC
http://dx.doi.org/10.1038/s41598-023-46737-1DOI Listing

Publication Analysis

Top Keywords

dermal fibroblasts
20
dermal fibrosis
20
mouse model
12
progression dermal
12
fibroblasts derived
12
patients ssc
12
dermal
10
systemic sclerosis
8
effects apremilast
8
derived patients
8

Similar Publications

Hyaluronic acid (HA) is an important component of the skin's extracellular matrix, and its degradation leads to wrinkles. Hyaluronan-binding protein involved in hyaluronan depolymerization (HYBID) is the main factor responsible for HA degradation in dermis. This study aimed to identify natural plant materials that can effectively suppress HYBID expression and protect HA from degradation.

View Article and Find Full Text PDF

Background: Cancer is a significant global health issue due to its high incidence and mortality rates. In recent years, the relationship between the human microbiota and cancer has garnered attention across various medical fields. This includes research into the microbial communities that influence cancer development, tumor-associated microorganisms, and the interactions between the microbiome and tumor, collectively referred to as the oncobiome.

View Article and Find Full Text PDF

Inhibitory Effect on the Tyrosinase Activity and Low Cytotoxicity of Monounsaturated Long-Chain Chelating Fatty Ester.

An Acad Bras Cienc

January 2025

Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais, Laboratório de Investigação Sistemática em Biotecnologia e Biodiversidade Molecular, Rua Augusto Corrêa, 01, 66075-110 Belém, PA, Brazil.

In the present study, 5-Hydroxy-2-(Oleoyloxymethyl) -4H-pyran-4-one (KMO 3), and their chelated with Cu(II) and Fe(III) ions were synthesized to explore their inhibitory activity against tyrosinase and cytotoxicity. To this end, the structures of the obtained compounds were confirmed by ATR/FT-IR, 13C and 1H-NMR, and UV-vis techniques. The results show that chelating fatty ester presents the bands at 1567m, 1511w cm-1 attributed to the coordinated carbonyl (Cu(II)←[O=C]2), and the bands at 1540m, 1519m cm-1 which were attributed to the coordinated carbonyl (Fe(III)←[O=C]3).

View Article and Find Full Text PDF

An Exploratory Study of PN HPT for Treating Postsurgical Atrophic and Depressed Scars.

J Cosmet Dermatol

January 2025

Clinical Pharmacology Consultant in Aesthetic Medicine, Milan, Italy.

Background: Postsurgical atrophic scars tend to respond poorly to treatments, especially non-energy-based ones. Hydrophilic PN HPT (Polynucleotides High Purification Technology) injected intradermally is a non-energy-based option with an immediate volume-enhancing effect that indirectly improves the fibroblast synthesis of collagen and extracellular matrix. The PN HPT ingredient has the further benefit of a dermal "priming" effect that enhances the efficacy of other scar treatments.

View Article and Find Full Text PDF

Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!