A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of early hematoma expansion of spontaneous intracerebral hemorrhage based on deep learning radiomics features of noncontrast computed tomography. | LitMetric

Objectives: Aimed to develop a nomogram model based on deep learning features and radiomics features for the prediction of early hematoma expansion.

Methods: A total of 561 cases of spontaneous intracerebral hemorrhage (sICH) with baseline Noncontrast Computed Tomography (NCCT) were included. The metrics of hematoma detection were evaluated by Intersection over Union (IoU), Dice coefficient (Dice), and accuracy (ACC). The semantic features of sICH were judged by EfficientNet-B0 classification model. Radiomics analysis was performed based on the region of interest which was automatically segmented by deep learning. A combined model was constructed in order to predict the early expansion of hematoma using multivariate binary logistic regression, and a nomogram and calibration curve were drawn to verify its predictive efficacy by ROC analysis.

Results: The accuracy of hematoma detection by segmentation model was 98.2% for IoU greater than 0.6 and 76.5% for IoU greater than 0.8 in the training cohort. In the validation cohort, the accuracy was 86.6% for IoU greater than 0.6 and 70.0% for IoU greater than 0.8. The AUCs of the deep learning model to judge semantic features were 0.95 to 0.99 in the training cohort, while in the validation cohort, the values were 0.71 to 0.83. The deep learning radiomics model showed a better performance with higher AUC in training cohort (0.87), internal validation cohort (0.83), and external validation cohort (0.82) than either semantic features or Radscore.

Conclusion: The combined model based on deep learning features and radiomics features has certain efficiency for judging the risk grade of hematoma.

Clinical Relevance Statement: Our study revealed that the deep learning model can significantly improve the work efficiency of segmentation and semantic feature classification of spontaneous intracerebral hemorrhage. The combined model has a good prediction efficiency for early hematoma expansion.

Key Points: • We employ a deep learning algorithm to perform segmentation and semantic feature classification of spontaneous intracerebral hemorrhage and construct a prediction model for early hematoma expansion. • The deep learning radiomics model shows a favorable performance for the prediction of early hematoma expansion. • The combined model holds the potential to be used as a tool in judging the risk grade of hematoma.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-023-10410-yDOI Listing

Publication Analysis

Top Keywords

deep learning
36
early hematoma
20
spontaneous intracerebral
16
intracerebral hemorrhage
16
combined model
16
iou greater
16
validation cohort
16
prediction early
12
hematoma expansion
12
based deep
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!