AI Article Synopsis

  • * Single-cell suspensions revealed that tumor tissues had lower ratios of lymphoid to myeloid cells and an imbalance between M1 and M2 macrophages compared to non-tumorous tissues.
  • * It was found that the central tumor area is the most immune-suppressive, with a significant presence of immune-suppressive cells compared to the invasive front and adjacent non-tumorous tissue.

Article Abstract

This study examined the composition of the immune microenvironment at different sites within resected pancreas specimens from patients with pancreatic ductal adenocarcinoma (PDAC). Therefore, single-cell suspensions were made from fresh tumor and non-tumorous tissue. Fourteen patients were included from whom twelve PDAC and five non-tumorous samples were obtained. These samples were analyzed with a nineteen marker panel on the Aurora spectral flow cytometer. Furthermore, slides from formalin-fixed paraffine PDACs of eight additional patients were stained with eight markers and analyzed by multispectral imaging. These corresponded to central tumor, periphery of the tumor, i.e., invasive front and resected lymph node and were divided into tumor and adjacent tissue. In the single-cell suspension, a decreased ratio between lymphoid and myeloid cells and between M1 and M2 macrophages was observed in the tumor tissue compared to non-tumorous tissue. Furthermore, an increase in CD169 + macrophages in patients undergoing neoadjuvant therapy was found. Using immunofluorescence, more macrophages compared to T cells were observed, as well as a lower ratio of CD8 to M2 macrophage, a higher ratio of CD4-CD8 T cells and a higher ratio of immune-suppressive cells to pro-inflammatory cells in the PDAC area compared to the adjacent non-tumorous tissue. Finally, there were more immune-suppressive cells in the central tumor area compared to the invasive front. In conclusion, we show a gradient in the immune-suppressive environment in PDAC from most suppressive in the central tumor to least suppressive in distant non-tumorous tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10700423PMC
http://dx.doi.org/10.1007/s00262-023-03573-6DOI Listing

Publication Analysis

Top Keywords

non-tumorous tissue
16
central tumor
12
tumor
8
patients pancreatic
8
invasive front
8
higher ratio
8
immune-suppressive cells
8
area compared
8
tissue
6
cells
6

Similar Publications

Assessment of Surgical Margin of Tongue Squamous Cell Carcinoma via Raman Mapping.

Oral Dis

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Objectives: This study introduces a novel classification approach that combines convolutional neural network (CNN) and Raman mapping to differentiate between tongue squamous cell carcinoma (TSCC) and non-tumorous tissue, as well as to identify different histological grades of TSCC.

Materials And Methods: In this study, 240 Raman mappings data from 30 tissue samples were collected from 15 patients who had undergone surgical resection for TSCC. A total of 18,000 sub-mappings extracted from Raman mappings were then used to train and test a CNN model, which extracted feature representations that were subsequently processed through a fully connected network to perform classification tasks based on the Raman mapping data.

View Article and Find Full Text PDF

Integrative bioinformatics approach identifies novel drug targets for hyperaldosteronism, with a focus on SHMT1 as a promising therapeutic candidate.

Sci Rep

January 2025

Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Shangcheng District, Hangzhou, 310000, Zhejiang Province, China.

Primary aldosteronism (PA), characterized by autonomous aldosterone overproduction, is a major cause of secondary hypertension with significant cardiovascular complications. Current treatments mainly focus on symptom management rather than addressing underlying mechanisms. This study aims to discover novel therapeutic targets for PA using integrated bioinformatics and experimental validation approaches.

View Article and Find Full Text PDF

Background/aims: Hepatocellular carcinoma (HCC) exhibits significant sex disparities in incidence, yet its molecular mechanisms remain unclear. We explored the role of telomerase reverse transcriptase (TERT) genetic alterations and hepatitis B virus (HBV) integration, both known major contributors to HCC, in sex-specific risk for HBV-related HCC.

Methods: We examined 310 HBV-related HCC tissues to investigate sex-specific TERT promoter (TERT-pro) mutations and HBV integration profiles, stratified by sex and age, and validated with single-cell RNA sequencing (scRNA-seq) data.

View Article and Find Full Text PDF

Intrahepatic cholangiocarcinoma (ICC) tumor cells and their interactions with the immune microenvironment, particularly at the leading-edge area, have been underexplored. This study employs single-cell RNA sequencing (scRNA-seq) and spatial transcriptome (ST) analysis on samples from the tumor core, adjacent non-tumorous tissue, and the leading-edge area of nine ICC patients. These findings indicate that tumor cells at the leading-edge area demonstrate enhanced proliferation and are tightly associated with the stroma, including endothelial cells and POSTN+ FAP+ fibroblasts.

View Article and Find Full Text PDF

Recently, studies on FAM96B functions mainly focused on its role in maintaining the normal physiological function of cells. However, the clinical implications of FAM96B in hepatocellular carcinoma (HCC) are still unclear. FAM96B mRNA expression was detected in human HCC tissues and the matched nontumorous tissues by quantitative real-time reverse transcription (qRT-PCR) and then validated in The Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!