Congenital auricular deformity (CAD) is a complex phenotype that may occur as a single malformation or part of a congenital syndrome. The genetic architecture and utility of next-generation sequencing (NGS) in a sizable cross-sectional study of critically ill neonates with CAD have not yet been systematically investigated. This cross-sectional study investigated the genetic spectrum in critically ill neonates with CADs. Critically ill neonates with CADs (n = 251) were enrolled between August 8, 2016 and October 1, 2022. All neonates underwent NGS. The outcomes were molecular diagnostic yield, spectrum of genetic events, and clinical findings. Genetic findings were obtained in 107 neonates (42.6%), of which 67.3% (72/107) had pathogenic/likely pathogenic/variants of uncertain significance (P/LP/VUS) gene variations and 32.7% (35/107) had P/LP/VUS copy number variations (CNVs). The diagnostic rates of clinical exome sequencing were similar to those of exome sequencing. The logistic regression model revealed that CAD neonates with craniofacial abnormalities (OR = 4.15, 95% CI 2.29-7.53) or cardiovascular malformation (OR = 2.09, 95% CI 1.14-3.84) are more likely to be attributed to genetic causes. Follow-up analysis revealed that, compared to those in the undiagnosed group, the number of neonates whose care was withdrawn or who died was higher in the genetically diagnosed group (P < 0.05). This study identified a high incidence of genetic causes in critically ill neonates with CADs, with a combination of single-nucleotide variations and CNVs among the genetic causes of CAD. These findings highlight potential of NGS in the genetic testing of critically ill neonates with CADs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00439-023-02612-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!