Biofilms play pivotal roles in fluvial ecosystems, yet virtually nothing is known about viruses in these communities. Leveraging an optimized sample-to-sequence pipeline, we studied the spatiotemporal turnover of dsDNA viruses associated with stream biofilms and found an astounding diversity to be structured by seasons and along the longitudinal gradient in the stream. While some vOTUs were region- or season-specific, we also identified a large group of permanent biofilm phages, taxonomically dominated by Myoviridae. Comparison of the observed viral distribution with predictions based on neutral community assembly indicated that chance and dispersal may be important for structuring stream biofilm viral communities. Deviation from neutral model predictions suggests that certain phages distribute efficiently across distant locations within the stream network. This dispersal capacity appears to be linked to EPS depolymerases that enable phages to efficiently overcome the biofilm barrier. Other phages, particularly vOTUs classified as Siphoviridae, appear locally overrepresented and to rely on a lysogenic life cycle, potentially to exploit the spatial distribution of bacterial populations in stream biofilms. Overall, biofilm viral and bacterial community turnover were significantly coupled. Yet, viral communities were linked to the presence of the most abundant bacterial community members. With this work, we provide a foundational ecological perspective on factors that structure viral diversity in stream biofilms and identify potentially important viral traits related to the biofilm mode of life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723757 | PMC |
http://dx.doi.org/10.1038/s43705-022-00112-9 | DOI Listing |
Microb Pathog
December 2024
Laboratory of Applied Microbiology and Cancer Remedies, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India. Electronic address:
Associated with nosocomial infections, the environmental Gram-negative coccobacillus A. baumannii leads to various kinds of high mortality-rate infections among which pneumonias mainly in immune-compromised people from health-care facilities. A critical component of the current antibiotic resistance problem is the presence of antibiotics sub-minimum inhibitory concentrations (sub-MICs) in a variety of natural settings including drinking water, sewage water, rivers, lakes, and natural sludge.
View Article and Find Full Text PDFFEMS Microbiol Ecol
December 2024
River Ecosystems Laboratory, Alpine and Polar Environmental Research Centre, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Climate change is predicted to alter the hydrological and thermal regimes of high-mountain streams, particularly glacier-fed streams. However, relatively little is known about how these environmental changes impact the microbial communities in glacier-fed streams. Here, we operated streamside flume mesocosms in the Swiss Alps, where benthic biofilms were grown under treatments simulating climate change.
View Article and Find Full Text PDFEnviron Res
December 2024
Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai, 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China. Electronic address:
Moving bed biofilm reactor (MBBR) technology with diverse merits is efficient in treating various waste streams whereas their microbial functional properties and ecology still need in-depth investigation, especially in real wastewater treatment systems. Herein, a well-controlled MBBR treating municipal wastewater was established to investigate the long-term system performance and the underlying principles of community succession and assembly. The system successfully achieved ammonium, TN, and chemical oxygen demand (COD) removal of 96.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
The frequency of plastic debris entering agricultural land is likely going to increase due to increased discharge into surface waters and more frequent flood events. Microbial biofilm on the surfaces of plastic pollution (known as the 'plastisphere') in freshwater environments often includes human pathogenic bacteria capable of causing disease. Pathogens have been detected on the surface of plastics in freshwater environments, but it is yet to be determined whether plastic debris can also transport pathogens into agricultural fields during flooding.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China; Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Kunming 650500, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!