Microplastics (MP), as novel substrata for microbial colonization within aquatic ecosystems, are a matter of growing concern due to their potential to propagate foreign or invasive species across different environments. MP are known to harbour a diversity of microorganisms, yet little is understood of the dynamics of their biofilms and their capacity to successfully displace these microorganisms across different aquatic ecosystems typically marked by steep salinity gradients. To address this, we performed an in situ sequential incubation experiment to simulate MP transport from riverine to coastal seawaters using synthetic (high-density polyethylene, HDPE and tyre wear, TW) and natural (Wood) substrata. Bacterial communities on incubated particles were compared to each other as well as to those in surrounding waters, and their dynamics along the gradient investigated. All communities differed significantly from each other in their overall structure along the salinity gradient and were shaped by different ecological processes. While HDPE communities were governed by environmental selection, those on TW and Wood were dominated by stochastic events of dispersal and drift. Upon transfer into coastal seawaters, an almost complete turnover was observed among HDPE and TW communities. While synthetic particles displaced a minor proportion of communities across the salinity gradient, some of these comprised putatively pathogenic and resistant taxa. Our findings present an extensive assessment of MP biofilms and their dynamics upon displacement across different aquatic systems, presenting new insights into the role of MP as transport vectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723596PMC
http://dx.doi.org/10.1038/s43705-022-00117-4DOI Listing

Publication Analysis

Top Keywords

salinity gradient
12
dynamics biofilms
8
aquatic ecosystems
8
coastal seawaters
8
hdpe communities
8
communities
5
travelling particles
4
particles community
4
dynamics
4
community dynamics
4

Similar Publications

The absorption refrigeration system (ARS) stands as a remarkable device that is capable of efficiently harnessing low-grade thermal energy and converting it into cooling capacity. The reverse electrodialysis (RED) system harvests the salinity gradient energy embedded in two solutions of different concentrations into electricity. An innovative RED-ARS integration system is proposed that outputs cooling capacity and electric energy, driven by waste heat.

View Article and Find Full Text PDF

Introduction: The northwest Arabian Gulf encounters significant anthropogenic pressures, including nutrient enrichment from coastal development and effluent discharge.

Methods: This study presents the first shotgun metagenomics-based characterization of microbial communities in Kuwaiti waters of the northwest Arabian Gulf, focusing on Kuwait's first Marine Protected Area (MPA) in Sulaibikhat Bay, a vital nursery ground for commercially important fish.

Results: Analysis revealed significantly higher microbial diversity within the MPA compared to adjacent waters, with Rhodobacteraceae (27.

View Article and Find Full Text PDF

Improving crop salinity management requires enhanced understanding of salinity responses of leaf and fine-root traits governing resource acquisition, ideally in relation to ion accumulation at intra- or inter-specific levels. We hypothesized that these responses are coupled towards integrated resource conservation for plants under prolonged salt treatment. We tested the hypothesis with a glasshouse experiment on saplings of six contrasting hybrids, subjected to either control or salt treatment (reverse osmosis water versus 3.

View Article and Find Full Text PDF

Study on the application of brine mixing method in lithium extraction from Zabuye salt lake, Tibet.

Sci Rep

January 2025

MNR Key Laboratory of Saline Lake Resources and Environments, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China.

With the rapid development of new energy industry, the demand for lithium resources continues to rise. The salinity-gradient solar pond (SGSP) technology is used to extract the lithium carbonate from Zabuye salt lake brine in the Tibet Plateau of China. Years of production practice proved that due to the unsatisfactory quality and insufficient amount of lithium-rich brine used to make the SGSP, the yield and grade of lithium concentrate in the solar pond has been seriously affected.

View Article and Find Full Text PDF

Coral reefs experience numerous environmental gradients affecting organismal physiology and species biodiversity, which ultimately impact community metabolism. This study shows that submarine groundwater discharge (SGD), a common natural environmental gradient in coastal ecosystems associated with decreasing temperatures, salinity and pH with increasing nutrients, has both direct and indirect effects on coral reef community metabolism by altering individual growth rates and community composition. Our data revealed that SGD exposure hindered the growth of two algae, and by 67 and 200%, respectively, and one coral, by 20%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!