Nitrate pollution in surface water has become a significant environmental concern. Sulfur autotrophic denitrification (SAD) technology is gaining attention for its cost-effectiveness and efficiency in nitrate removal. This study aimed to investigate the structure and function of sulfur autotrophic denitrification microbial communities in systems using sodium thiosulfate (Group A) and elemental sulfur (Group B) as the sole electron donors. Metagenomic amplicon sequencing and physicochemical analysis were performed to examine the microbial communities. The results revealed that on day 13, the nitrate nitrogen removal rate in Group A was significantly higher (89.2%) compared to Group B (74.4%). The dominant genus in both Groups was Thiobacillus, with average abundances of 34.15% and 16.34% in Groups A and B, respectively. β-diversity analysis based on species level showed significant differences in bacterial community structure between the two Groups (P < 0.001). Group A exhibited a greater potential for nitrate reduction and utilized both thiosulfate and elemental sulfur (P < 0.01) compared to Group B. This study provides a sufficient experimental basis for improving the start-up time and operating cost of SAD system through sulfur source switching and offers new prospects for in-depth mechanistic analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632486 | PMC |
http://dx.doi.org/10.1038/s41598-023-46829-y | DOI Listing |
ACS Omega
December 2024
College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China.
In this study, a recirculating aquaculture system (RAS) was constructed, and a denitrification bioreactor was installed to enhance nitrogen removal. In addition, the nitrogen removal performance of the system was investigated. FeS was prepared by calcining iron (Fe) and S powder, which was used as an electron donor for denitrification.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312.
A novel Gram-negative, motile, rod-shaped bacterium, designated 4137-cl, was isolated from a thermal spring of North Ossetia (Russian Federation). Strain 4137-cl grew at 30-50 °C (optimum 42 °C) with 0-3.5% NaCl (optimum 0-0.
View Article and Find Full Text PDFSci Total Environ
January 2025
Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar, Chile.
Nitrogen contamination of water sources poses significant environmental and health risks. The sulfur-driven simultaneous nitrification and autotrophic denitrification (SNAD) process offers a cost-effective solution, as it operates in a single reactor, requires no organic carbon addition, and produces minimal sludge. However, this process remains underexplored, with microbial population dynamics, their interactions, and their implications for process efficiency not yet fully understood.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
Sulfur autotrophic denitrification (SAD) is a promising technology for nitrogen removal, particularly suitable for low carbon-to-nitrogen wastewater without additional carbon sources. However, SAD inevitably generates significant amounts of SO. To address this issue, combining SAD with iron-carbon micro-electrolysis technology, which can reduce sulfate, provides electron donors for autotrophic denitrification and facilitates sulfur cycling.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Ecology, Engineering Research Center for Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, PR China. Electronic address:
Pyrite is considered as an effective and environmentally friendly substrate in constructed wetlands (CW) for wastewater treatment, but its application in recirculation stacking hybrid constructed wetlands (RSHCW) has been scarcely studied. This study uses varying amounts of pyrite as the substrate in RSHCW, leveraging the recirculation of wastewater to alter microenvironments such as dissolved oxygen (DO) and pH, to explore the potential mechanisms of nitrogen (N) and phosphorus (P) removal in pyrite-based RSHCW. The results show that as the proportion of pyrite increases, the removal rate of total phosphorus (TP) in the effluent also increases (25%→58%), significantly enhancing the deposition of iron-bound phosphorus (Fe-P) on the substrate, thereby turning CW into a P reservoir.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!