A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Targeting Amyloids with Coated Nanoparticles: A Review on Potential Combinations of Nanoparticles and Bio-Compatible Coatings. | LitMetric

Targeting Amyloids with Coated Nanoparticles: A Review on Potential Combinations of Nanoparticles and Bio-Compatible Coatings.

Crit Rev Ther Drug Carrier Syst

Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.

Published: November 2023

Amyloidosis is the major cause of many neurodegenerative diseases, such as, Alzheimer's and Parkinson's where the misfolding and deposition of a previously functional protein make it inept for carrying out its function. The genesis of amyloid fibril formation and the strategies to inhibit it have been studied extensively, although some parts of this puzzle still remain unfathomable to date. Many classes of molecules have been explored as potential drugs in vitro, but their inability to work in vivo by crossing the blood-brain-barrier has made them an inadequate treatment option. In this regard, nanoparticles (NPs) have turned out to be an exciting alternative because they could overcome many drawbacks of previously studied molecules and provide advantages, such as, greater bioavailability of molecules and target-specific delivery of drugs. In this paper, we present an overview on several coated NPs which have shown promising efficiency in inhibiting fibril formation. A hundred and thirty papers published in the past two decades have been comprehensively reviewed, which majorly encompass NPs comprising different materials like gold, silver, iron-oxide, poly(lactic-co-glycolic acid), polymeric NP, etc., which are coated with various molecules of predominantly natural origin, such as different types of amino acids, peptides, curcumin, drugs, catechin, etc. We hope that this review will shed light on the advancement of symbiotic amalgamation of NPs with molecules from natural sources and will inspire further research on the tremendous therapeutic potential of these combinations for many amyloid-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2023046209DOI Listing

Publication Analysis

Top Keywords

potential combinations
8
fibril formation
8
molecules natural
8
molecules
5
targeting amyloids
4
amyloids coated
4
coated nanoparticles
4
nanoparticles review
4
review potential
4
combinations nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!