AI Article Synopsis

Article Abstract

The polarization of naive Th cells into differentiated subsets in vitro was a powerful approach to define the development and function of Th cells in vivo. Th cell cultures identified cytokines that promote polarization and defined the phenotype and stability of differentiated cells. One of the limitations of this approach is the heterogeneity of the differentiated culture, essentially with regard to what proportion of the culture is secreting the hallmark cytokine of interest. This heterogeneity has always been puzzling because all cells in the culture have been exposed to identical culture conditions. We examined this phenomenon using an Il17f lineage-tracing allele (Cost, Cre on seventeen transcript) crossed to stop-flox Rosa-YFP (yellow fluorescent protein) mice. We found that less than half of the cells in a Th17 culture become lineage-positive during a differentiation culture and that it is primarily cells that are lineage-positive that produce cytokines when cultures are restimulated after differentiation. We sorted and analyzed YFP-positive and YFP-negative cells and found similar expression of many Th17 transcription factors, although YFP-negative cells had increased expression of other lineage-defining transcription factors. We observed that YFP-negative cells had diminished expression of Stat3 and Il6ra, as well as decreased STAT3 activation. YFP-negative cells transduced with active STAT3 had significant increases in IL-17A expression, without increases in Th17 transcription factors. Taken together, these data suggest that there is a threshold of STAT3 activation that is required for efficient Th17 differentiation, and that even in a culture of homogeneous naive T cells there is heterogeneity in the receipt of early cytokine signals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695415PMC
http://dx.doi.org/10.4049/immunohorizons.2300072DOI Listing

Publication Analysis

Top Keywords

yfp-negative cells
16
transcription factors
12
cells
11
naive cells
8
differentiation culture
8
th17 transcription
8
stat3 activation
8
culture
7
stat3
5
th17
5

Similar Publications

The differentiation of mouse neurons is a complex process involving cell maturation and branching, occurring during both, embryonic development and differentiation in vitro. To study mouse neuronal morphology, we used the Thy1 YFP-16 mouse strain. Although this mouse strain was described over twenty years ago, detailed studies on projections outgrowth and morphology of neurons are still lacking.

View Article and Find Full Text PDF

The polarization of naive Th cells into differentiated subsets in vitro was a powerful approach to define the development and function of Th cells in vivo. Th cell cultures identified cytokines that promote polarization and defined the phenotype and stability of differentiated cells. One of the limitations of this approach is the heterogeneity of the differentiated culture, essentially with regard to what proportion of the culture is secreting the hallmark cytokine of interest.

View Article and Find Full Text PDF

Release of acetylcholine (ACh) in the hippocampus (HC) occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB) is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa) mice were examined in HC.

View Article and Find Full Text PDF

Ablation of Foxl1-Cre-labeled hepatic progenitor cells and their descendants impairs recovery of mice from liver injury.

Gastroenterology

January 2015

Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania. Electronic address:

Background & Aims: Foxl1(+) hepatic progenitor cells (HPCs) differentiate into cholangiocytes and hepatocytes after liver injury. We investigated the requirement for Foxl1(+) HPCs in recovery from liver injury in mice.

Methods: We developed mice in which we could trace and delete Foxl1-expressing HPCs and their descendants (Foxl1-Cre;Rosa(YFP/iDTR)-inducible diphtheria toxin receptor [iDTR] mice).

View Article and Find Full Text PDF

Transient receptor potential canonical type 1 (TRPC1) operates as a sarcoplasmic reticulum calcium leak channel in skeletal muscle.

J Biol Chem

December 2009

Laboratoire de Physiologie Intégrative, Cellulaire, et Moléculaire, Université de Lyon, Université Lyon 1, CNRS Unité Mixte de Recherche 5123, 69622 Villeurbanne Cedex, France. Electronic address:

Extensive studies performed in nonexcitable cells and expression systems have shown that type 1 transient receptor potential canonical (TRPC1) channels operate mainly in plasma membranes and open through phospholipase C-dependent processes, membrane stretch, or depletion of Ca(2+) stores. In skeletal muscle, it is proposed that TRPC1 channels are involved in plasmalemmal Ca(2+) influx and stimulated by store depletion or membrane stretch, but direct evidence for TRPC1 sarcolemmal channel activity is not available. We investigated here the functional role of TRPC1 using an overexpressing strategy in adult mouse muscle fibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!