Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Force-responsive molecules that produce fluorescent moieties under stress provide a means for stress-sensing and material damage assessment. In this work, we report a mechanophore based on Diels-Alder adduct TAD-An of 4,4'-(4,4'-diphenylmethylene)-bis-(1,2,4-triazoline-3,5-dione) and initiator-substituted anthracene that can undergo retro-Diels-Alder (rDA) reaction by pulsed ultrasonication and compressive activation in bulk materials. The influence of having C-N versus C-C bonds at the sites of bond scission is elucidated by comparing the relative mechanical strength of TAD-An to another Diels-Alder adduct MAL-An obtained from maleimide and anthracene. The susceptibility to undergo rDa reaction correlates well with bond energy, such that C-N bond containing TAD-An degrades faster C-C bond containing MAL-An because C-N bond is weaker than C-C bond. Specifically, the results from polymer degradation kinetics under pulsed ultrasonication shows that polymer containing TAD-An has a rate constant of 1.59×10 min , while MAL-An (C-C bond) has a rate constant of 1.40×10 min . Incorporation of TAD-An in a crosslinked polymer network demonstrates the feasibility to utilize TAD-An as an alternative force-responsive probe to visualize mechanical damage where fluorescence can be "turned-on" due to force-accelerated retro-Diels-Alder reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202300850 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!