We investigate matrix signal processing techniques for estimating synchronized spontaneous otoacoustic emission (OAE) in noise. Responses to repeated clicks are first stored in a matrix, and singular value decomposition is either applied in the time domain or the frequency domain after constructing a Hankel matrix at every frequency. The singular values are subject to optimal shrinkage (OS) which maximizes the signal-to-noise ratio. Human OAE data were analyzed, and the Hankel matrix method outperforms the time-domain OS method in synchronized spontaneous otoacoustic emission estimation, but not in the estimation of transient-evoked otoacoustic emission. Reasons for the performance discrepancy are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0022336 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!