We compare the performance of three different multiconfigurational wave function-based electronic structure methods and two implementations of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method. The study is characterized by three features: (i) it uses a small set of quantum-classical trajectories rather than potential energy surface mapping, (ii) it focuses, exclusively, on the photoisomerization of retinal protonated Schiff base models, and (iii) it probes the effect of both methyl substitution and the increase in length of the conjugate π-system. For each tested method, the corresponding analytical gradients are used to drive the quantum-classical (Tully's FSSH method) trajectory propagation, including the recent multistate XMS-CASPT2 and RMS-CASPT2 gradients. It is shown that while CASSCF, XMS-CASPT2, and RMS-CASPT2 yield consistent photoisomerization dynamics descriptions, REKS produces, in some of these systems, qualitatively different behavior that is attributed to a flatter and topographically different excited state potential energy surface. The origin of this behavior can be traced back to the effect of the employed density functional approximation. The above studies are further expanded by benchmarking, at the CASSCF and REKS levels, the electronic structure methods using a QM/MM model of the visual pigment rhodopsin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.3c00879 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!