Owing to the ubiquity of the hydroxyl group, reductive deoxygenation of alcohols has become an active research area. The classic Barton-McCombie reaction suffers from a tedious two-step procedure. New efficient methods have been developed, but they have some limitations, such as a narrow substrate scope and the use of moisture-sensitive Lewis acids. In this work, we describe the PhP/ICHCHI-promoted reductive deoxygenation of alcohols with NaBH. The process is applicable to benzyl, allyl and propargyl alcohols, and also to primary and secondary alcohols, demonstrating a wide substrate scope and a good level of functional group tolerance. This protocol features convenient operation and low cost of all reagents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3ob01698f | DOI Listing |
Angew Chem Int Ed Engl
January 2025
CNRS: Centre National de la Recherche Scientifique, Chemistry, FRANCE.
Compounds featuring bonds between mercury and transition metals are of interest for their intriguing/ambiguous bonding and scarcely explored reactivities. We report herein the synthesis and reactivities of the new compound [(POCOP)Ni]2Hg, [Ni2Hg], featuring a trinuclear Ni-Hg-Ni core (POCOP = κP,κC,κP´-2,6-(i-Pr2PO)2C6H3). [Ni2Hg] reacts with CO2 to give the carbonate-bridged complex [Ni2CO3].
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Materials, Henan Normal University, Xinxiang, Henan453007,China.
Borenium ions have attracted significant attention in organic transformations due to their strong Lewis acidity. The reported borenium ions are often stabilized by sterically demanding substituents and strong coordination bonds. Herein, we have synthesized a small steric borenium-equivalent NHBHOTf and subjected it to the exhaustive reduction of a carboxylic functional group to a methyl group, which shows broad functional group tolerance.
View Article and Find Full Text PDFWaste Manag
December 2024
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Biomass/waste Utilization, Tianjin Engineering Research Center for Organic Wastes Safe Disposal and Energy Utilization, Tianjin 300072, China. Electronic address:
In this study, ex-situ catalytic pyrolysis of oxygen-containing polycarbonate (PC) was conducted to prepare carbon nanotubes (CNTs) and H-rich syngas. This study examined the influence of the active metal components (Ni and Fe), catalyst pre-reduction, and pre-deoxygenation of pyrolysis volatiles on the catalytic performance and mechanism. Results show that the reductive constituents in pyrolysis volatiles make it difficult to reduce the Fe oxides, thus hindering the CNTs growth on Fe catalysts, compared to Ni catalysts.
View Article and Find Full Text PDFTop Curr Chem (Cham)
November 2024
Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou, 310024, China.
J Org Chem
December 2024
Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!