Synaptic behavior simulation in transistors based on MoS2 has been reported. MoS2 was utilized as the active layer to prepare ambipolar thin-film transistors. The excitatory postsynaptic current phenomenon was simulated, observing a gradual voltage decay following the removal of applied pulses, ultimately resulting in a response current slightly higher than the initial current. Subsequently, ±5 V voltages were separately applied for ten consecutive pulse voltage tests, revealing short-term potentiation and short-term depression behaviors. After 92 consecutive positive pulses, the device current transitioned from an initial value of 0.14 to 28.3 mA. Similarly, following 88 consecutive negative pulses, the device current changed, indicating long-term potentiation and long-term depression behaviors. We also employed a pair of continuous triangular wave pulses to evaluate paired-pulse facilitation behavior, observing that the response current of the second stimulus pulse was ∼1.2× greater than that of the first stimulus pulse. The advantages and prospects of using MoS2 as a material for thin-film transistors were thoroughly displayed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0174857 | DOI Listing |
Nanoscale Adv
December 2024
Department of Chemical and Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa Ontario K1N 6N5 Canada
Flexibility has been a key selling point in the development of carbon-based electronics and sensors with the promise of further development into wearable devices. Semiconducting single-walled carbon nanotubes (SWNTs) lend themselves well to applications requiring flexibility while achieving high-performance. Our previous work has demonstrated a tri-layer polymer dielectric composed of poly(lactic acid) (PLA), poly(vinyl alcohol) with cellulose nanocrystals (PVAc), and toluene diisocyanate-terminated poly(caprolactone) (TPCL), yielding an environmentally benign and solution-processable n-type thin-film transistor (TFT).
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Southwest Institute of Technology and Engineering, Chongqing 400039, China.
High-k metal oxides are gradually replacing the traditional SiO dielectric layer in the new generation of electronic devices. In this paper, we report the production of five-element high entropy metal oxides (HEMOs) dielectric films by solution method and analyzed the role of each metal oxide in the system by characterizing the film properties. On this basis, we found optimal combination of (AlGaTiYZr)O with the best dielectric properties, exhibiting a low leakage current of 1.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Key Laboratory of Architectural Cold Climate Energy Management, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China.
The electrical, stability and optoelectronic properties of GZTO TFTs with different Ga doping concentrations were investigated. Active layers were prepared by co-sputtering GaO and ZTO targets with different sputtering powers. The experimental results show that the surface of GZTO films is smooth, which is favorable for stability.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Computer Information Science, Korea University, Sejong 30019, Republic of Korea.
Inductively coupled plasma-reactive etching (ICP-RIE) of InGaZnO (IGZO) thin films was studied with variations in gas mixtures of hydrochloride (HCl) and argon (Ar). The dry etching characteristics of the IGZO films were investigated according to radiofrequency bias power, gas mixing ratio, and chamber pressure. The IGZO film showed an excellent etch rate of 83.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea.
The field of perovskite optoelectronics and electronics has rapidly advanced, driven by excellent material properties and a diverse range of fabrication methods available. Among them, triple-cation perovskites such as CsFAMAPbI offer enhanced stability and superior performance, making them ideal candidates for advanced applications. However, the multicomponent nature of these perovskites introduces complexity, particularly in how their structural, optical, and electrical properties are influenced by thermal annealing─a critical step for achieving high-quality thin films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!