Comparison of visual and semi-automated kilovoltage cone beam CT image QA analysis.

J Appl Clin Med Phys

Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota, USA.

Published: February 2024

Established kilovoltage cone-beam computed tomography (kV-CBCT) image quality assurance (QA) guidelines often rely on recommendations provided by the American Association of Physicists in Medicine (AAPM) task group (TG) reports with metrics that use visual analysis. This can result in measurement variations by different users, especially in visually subjective analyzes such as low contrast resolution. Consequently, there is a growing interest in more automated means of image QA analysis that can offer increased consistency, accuracy, and convenience. This work compares visual QA to semi-automated software QA analysis to establish the performance and viability of a semi-automated method. In this study, a commercial product (RIT Radia. Radiological Imaging Technology, Colorado Springs, CO) was used to evaluate 68 months of kV-CBCT images of a Catphan® 504 phantom obtained from a Varian TrueBeam® linear accelerator. Six key metrics were examined: high contrast resolution, low contrast resolution, Hounsfield unit constancy, uniformity and noise, and spatial linearity. The results of this method were then compared to those recorded visually using Bland-Altman, and/or paired sample t-test. Comparison of all modules showed a non-random, statistically significant difference between visual and semi-automated methods except for LDPE and Teflon in the Hounsfield unit constancy analysis, which falls outside the paired sample t-test's 5% significance level. A small high contrast resolution bias indicates the two analysis methods are largely equivalent, while a large low contrast resolution bias indicates greater semi-automated target detection. Wide limits of agreement in the uniformity module suggests variability due to multiple visual observers. Spatial linearity results measured differences of less than 0.17%. Semi-automated QA analysis offered greater stability over visual analysis. Additionally, semi-automated QA results satisfied or exceeded visual QA passing criteria and allowed for fast and consistent image quality analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860539PMC
http://dx.doi.org/10.1002/acm2.14190DOI Listing

Publication Analysis

Top Keywords

contrast resolution
20
visual semi-automated
12
low contrast
12
analysis
9
image analysis
8
image quality
8
visual analysis
8
high contrast
8
hounsfield unit
8
unit constancy
8

Similar Publications

Background: Ulcerative colitis patients who undergo ileal pouch-anal anastomosis (IPAA) without mucosectomy may develop inflammation of the rectal cuff (cuffitis). Treatment of cuffitis typically includes mesalamine suppositories or corticosteroids, but refractory cuffitis may necessitate advanced therapies or procedural interventions. This review aims to summarize the existing literature regarding treatments options for cuffitis.

View Article and Find Full Text PDF

Optogenetic therapy is a promising vision restoration method where light sensitive opsins are introduced to the surviving inner retina following photoreceptor degeneration. The cell type targeted for opsin expression will likely influence the quality of restored vision. However, a like-for-like pre-clinical comparison of visual responses evoked following equivalent opsin expression in the two major targets, ON bipolar (ON BCs) or retinal ganglion cells (RGCs), is absent.

View Article and Find Full Text PDF

Purpose: This study proposes a novel, contrast-free Magnetic Resonance Fingerprinting (MRF) method using balanced Steady-State Free Precession (bSSFP) sequences for the quantification of cerebral blood volume (CBV), vessel radius (R), and relaxometry parameters (T , T , T *) in the brain.

Methods: The technique leverages the sensitivity of bSSFP sequences to intra-voxel frequency distributions in both transient and steady-state regimes. A dictionary-matching process is employed, using simulations of realistic mouse microvascular networks to generate the MRF dictionary.

View Article and Find Full Text PDF

Purpose: Pulmonary MRI faces challenges due to low proton density, rapid transverse magnetization decay, and cardiac and respiratory motion. The fermat-looped orthogonally encoded trajectories (FLORET) sequence addresses these issues with high sampling efficiency, strong signal, and motion robustness, but has not yet been applied to phase-resolved functional lung (PREFUL) MRI-a contrast-free method for assessing pulmonary ventilation during free breathing. This study aims to develop a reconstruction pipeline for FLORET UTE, enhancing spatial resolution for three-dimensional (3D) PREFUL ventilation analysis.

View Article and Find Full Text PDF

Biological age estimation from DNA methylation and determination of relevant biomarkers is an active research problem which has predominantly been tackled with black-box penalized regression. Machine learning is used to select a small subset of features from hundreds of thousands of CpG probes and to increase generalizability typically lacking with ordinary least-squares regression. Here, we show that such feature selection lacks biological interpretability and relevance in the clocks of the first and next generations and clarify the logic by which these clocks systematically exclude biomarkers of aging and age-related disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!