ConspectusThe activation and functionalization of N to form nitrogen-element bonds have long posed challenges to industrial, biological, and synthetic chemists. The first transition-metal dinitrogen complex prepared by Allen and Senoff in 1965 provoked researchers to explore homogeneous N fixation. Despite intensive research in the last six decades, efficient and quantitative conversion of N to diazenido and hydrazido species remains problematic. Relative to a plethora of reactions to generate N complexes, their functionalization reactions are rather rare, and the yields are often unsatisfactory, emphasizing the need for systematic investigations of the reaction mechanisms.In this Account, we summarize our recent work on the synthesis, spectroscopic features, electronic structures, and reactivities of several Cr-N complexes. Initially, a series of dinuclear and trinuclear Cr(I)-N complexes bearing cyclopentadienyl-phosphine ligands were accessed. However, they cannot achieve N functionalization but undergo oxidative addition reactions with phenylsilane, azobenzene, and other unsaturated organic compounds at the low-valent Cr(I) centers rather than at the N unit. Further reduction of these Cr(I) complexes leads to the formation of more activated mononuclear Cr(0) bis-dinitrogen complexes. Remarkably, silylation of the cyclopentadienyl-phosphine Cr(0)-N complex with MeSiCl afforded the first Cr hydrazido complex. This process follows the distal pathway to functionalize the N atom twice, yielding an end-on η-hydrazido complex, Cr(III)═N-N(SiMe). In contrast, upon substitution of the phosphine ligand in the Cr(0)-N complex with a N-heterocyclic carbene (NHC) ligand, the corresponding reaction with MeSiCl proceeds via the alternating pathway; the silylation occurs at both N and N atoms and generates a side-on η-hydrazido complex, Cr(III)(η-MeSiN-NSiMe). Both silylation reactions are inevitably accompanied by the formation of Cr(III) hydrazido complexes and Cr(II) chlorides with a 2:1 ratio. These processes exhibit a peculiar '3-4-2-1' stoichiometry (i.e., treating 3 equiv of Cr(0)-N complexes with 4 equiv of MeSiCl yields 2 equiv of Cr(III) disilyl-hydrazido complexes and 1 equiv of Cr(II) chloride). Upon replacing the monodentate phosphine and/or NHC ligand with a bisphosphine ligand, a monodinitrogen Cr(0) complex, instead of the bis-dinitrogen Cr(0) complexes, is obtained; consequently, the silylation reactions progress via the normal two-electron route, which passes through Cr(II)-N═N-R diazenido species as an intermediate and furnishes [Cr(IV)═N-NR] hydrazido as the final products. More importantly, this type of Cr(0)-N complex can be not only silylated but also protonated and alkylated proficiently. All of the second-order reaction rates of the first and second transformations are determined along with the lifetimes of the intervening diazenido species. Based on these findings, we have successfully carried out nearly quantitative preparations of the Cr(IV) hydrazido species with unmixed or hybrid substituents.The studies of Cr-N systems provide effective approaches for the activation and functionalization of N, deepening the understanding of N electrophilic attack. We hope that this Account will inspire more discoveries related to the transformation of gaseous N to high-value-added nitrogen-containing organic compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666292 | PMC |
http://dx.doi.org/10.1021/acs.accounts.3c00476 | DOI Listing |
Eur J Med Chem
January 2025
Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:
NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2025
Sport Medicine Unit, Careggi University Hospital, Via delle Oblate 4, 50134 Florence, Italy.
The study was designed to investigate the pattern of intraventricular Hemo-Dynamic Forces (HDF) and myocardial performance during exercise in Elite Cyclists (EC). Transthoracic stress echocardiography was performed on nineteen EC and thirteen age-matched sedentary controls (SC) at three incremental exercise intensities based on Heart Rate Reserve (HRR). Left Ventricular (LV) HDF were computed from echocardiography long-axis data sets using a novel technique based on endocardial boundary tracking, both in apex-base and latero-septal directions.
View Article and Find Full Text PDFRev Neurosci
January 2025
School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China.
Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated.
View Article and Find Full Text PDFPsychother Res
January 2025
Department of Psychology, University of Haifa, Haifa, Israel.
Objective.: There is a growing consensus that interpersonal processes are key to understanding psychotherapy. How might that be reflected in the brain? Recent research proposes that inter-brain synchrony is a crucial neural component of interpersonal interaction.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Department of Immunology, School of Medicine and Dr. Jose Eleuterio Gonzalez University Hospital, Universidad Autónoma de Nuevo León, Monterrey, Mexico.
Co-inhibitory molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1), known as immune checkpoints, regulate the activity of T and myeloid cells during chronic viral infections and are well-established for their roles in cancer therapy. However, their involvement in chronic bacterial infections, particularly those caused by pathogens endemic to developing countries, such as Mycobacterium tuberculosis (Mtb), remains incompletely understood. Cytokine microenvironment determines the expression of co-inhibitory molecules in tuberculosis: Results indicate that the cytokine IL-12, in the presence of Mtb antigens, can enhance the expression of co-inhibitory molecules while preserving the effector and memory phenotypes of CD4+ T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!