The exploitation of highly active and stable catalysts for reduction of CO and water oxidation is one of the approaches to facilitate scalable and sustainable CO reduction potentially at the industrial scale. Herein, a feasible strategy to rationally build an overall CO + HO electrocatalytic reaction device is the preparation and matchup of a high-performance CO reduction catalyst and low-cost and highly active oxygen anode catalyst. A heterostructured nanosheet, γ-NiOOH/NiCO/Ni(HCOO), exhibited superior catalytic activity in the oxygen evolution reaction, and was integrated with CoPc/Fe-N-C to build an overall CO + HO cell with a current density of 10 mA cm at a very low cell voltage of 1.97 V, and the faradaic deficiency of CO to CO was maintained at greater than 90% at 1.9 V.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt02599c | DOI Listing |
Soft Matter
January 2025
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
The incorporation of a glassy material into a self-assembled nanoparticle (NP) film can produce highly loaded nanocomposites. Reduction of the NP diameter can lead to extreme nanoconfinement of the glass, significantly affecting the thermal and physical properties of the nanocomposite material. Here, we investigate the photostability and photodegradation mechanisms of molecular nanocomposite films (MNCFs) produced from the infiltration of indomethacin (IMC) molecules into self-assembled films of silica NPs (11-100 nm in diameter).
View Article and Find Full Text PDFmBio
January 2025
Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA.
Unlabelled: Snow algae darken the surface of snow, reducing albedo and accelerating melt. However, the impact of subsurface snow algae (e.g.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China.
The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.
View Article and Find Full Text PDFWater Res X
May 2025
School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.
View Article and Find Full Text PDFRSC Adv
January 2025
The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan +81-45-566-1580 +81-45-566-1839.
We prepared a cellulose nanofiber (CNF)-based porous membrane with three dimensional cellular structures. CNF was concentrated a surfactant-induced assembly by mixing CNF with a cationic surfactant, domiphen bromide (DB). Furthermore, they were accumulated by centrifugation to obtain a CNF-DB sol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!