Initiation factor eIF-4F, a multiprotein cap binding protein complex, was purified from HeLa cells by m7G affinity chromatography and independently by phosphocellulose column chromatography. The m7G affinity-purified sample contains three major proteins, p220, eIF-4A, and p28 (also known as CBP-I or eIF-4E). The abundancies of these proteins are roughly 2, 10, and 0.8 X 10(6) molecules/cell, respectively. Two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the eIF-4F samples shows that p28 comprises two isoelectric variants, one of which labels with phosphate and disappears when samples are treated with alkaline phosphatase. The 45,000-dalton protein in eIF-4F appears to be identical to eIF-4A. The p220 subunit rarely produces discrete spots on two-dimensional gel electrophoresis; in purified samples it usually forms 3 closely spaced streaks. eIF-4F fractionated by phosphocellulose chromatography separates into forms containing either phosphorylated or unphosphorylated p28. However, both fractions possess similar specific activities in in vitro translation assays for eIF-4F activity. The phosphorylation of p28 decreases upon heat shock when protein synthesis is repressed. The correlation of dephosphorylation of p28 with the inhibition of protein synthesis and the relatively low abundance of the eIF-4F complex suggest that eIF-4F plays a role in the translational control of mRNA binding. Limitations of the in vitro assay system may account for the failure to detect phosphorylation-dependent activity differences.
Download full-text PDF |
Source |
---|
Cell Death Dis
January 2025
Department of Pathology, Qilu Hospital and School of Basic Medical Sciences Shandong University, Jinan, Shandong, PR China.
Long noncoding RNAs (lncRNAs) are key regulators during gastric cancer (GC) development and may be viable treatment targets. In the present study, we showed that the expression of the long intergenic noncoding RNA 01016 (LINC01016) is significantly higher in GC tissues with lymph node metastasis (LNM) than those without LNM. LINC01016 overexpression predicts a poorer relapse-free survival (RFS) and overall survival (OS).
View Article and Find Full Text PDFGenes (Basel)
December 2024
Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Old Aberdeen AB24 3UE, UK.
Background/objectives: A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control.
Methods: We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level.
J Transl Med
January 2025
Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
Background: The sustained activation of androgen receptor splice variant-7 (AR-V7) is a key factor in the resistance of castration-resistant prostate cancer (CRPC) to second-generation anti-androgens such as enzalutamide (ENZ). The AR/AR-V7 protein is regulated by the E3 ubiquitin ligase STUB1 and a complex involving HSP70, but the precise mechanism remains unclear.
Methods: High-throughput RNA sequencing was used to identify differentially expressed circular RNAs (circRNAs) in ENZ-resistant and control CRPC cells.
Neoplasma
December 2024
Department of General Surgery/Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
Esophageal squamous cell carcinoma (ESCC) has high mortality. The role and regulatory mechanism of hsa_circ_0021727 (circ_0021727) in ESCC remain largely unknown. This study focused on the undiscovered impact of circ_0021727 on cell cycle progression, apoptosis, and angiogenesis of ESCC.
View Article and Find Full Text PDFMessenger RNA (mRNA) translational control plays a pivotal role in regulating cellular proteostasis under physiological and pathological conditions. Dysregulated mRNA translation is pervasive in cancer, in which protein synthesis is elevated to support accelerated cell growth and proliferation. Consequently, targeting the mRNA translation machinery has emerged as a therapeutic strategy to treat cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!