Allogenic hematopoietic stem cell transplantation (allo-HSCT) is a life-saving treatment for various hematological disorders. The success of allo-HSCT depends on the engraftment of donor cells and the elimination of recipient cells monitored through chimerism testing. We aimed to validate a next-generation sequencing (NGS)-based chimerism assay for engraftment monitoring and to emphasize the importance of including the most prevalent cell subsets in proficiency testing (PT) programs. We evaluated the analytical performance of NGS-based chimerism testing (AlloSeq-HCT and CareDx) with a panel of targeted 202 informative single-nucleotide polymorphisms (SNPs) (i.e., linearity and precision, analytical sensitivity and specificity, system accuracy, and reproducibility). We further compared the performance of our NGS panel with conventional short tandem repeat (STR) analysis in unfractionated whole blood and cell-subset-enriched CD3 and CD66. Our NGS-based chimerism monitoring assay has an impressive detection limit (0.3% host DNA) for minor alleles and analytical specificity (99.9%). Pearson's correlation between NGS- and STR-based chimerism monitoring showed a linear relationship with a slope of 0.8 and r = 0.973. The concordance of allo-HSCT patients using unfractionated whole blood, CD3, and CD66 was 0.95, 0.96, and 0.54, respectively. Utilization of CD3 cell subsets for mixed chimerism detection yielded an average of 7.3 ± 7-fold higher donor percentage detection compared to their corresponding unfractionated whole blood samples. The accuracy of the NGS assay achieved a concordance of 98.6% on blinded external quality control STR samples. The reproducibility series showed near 100% concordance with respect to inter-assay, inter-tech, inter-instrument, cell flow kits, and AlloSeq-HCT software versions. Our study provided robust validation of NGS-based chimerism testing for accurate detection and monitoring of engraftment in allo-HSCT patients. By incorporating the cell subsets (CD3 and CD66), the sensitivity and accuracy of engraftment monitoring are significantly improved, making them an essential component of any PT program. Furthermore, the implementation of NGS-based chimerism testing shows potential to streamline high-volume transplant services and improve clinical outcomes by enabling early relapse detection and guiding timely interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626454PMC
http://dx.doi.org/10.3389/fgene.2023.1282947DOI Listing

Publication Analysis

Top Keywords

chimerism testing
20
ngs-based chimerism
20
cell subsets
12
unfractionated blood
12
cd3 cd66
12
chimerism
9
testing accurate
8
accurate detection
8
detection monitoring
8
monitoring engraftment
8

Similar Publications

Although graft-versus-host disease (GVHD) is a common complication of hematopoietic stem cell transplantation, it is rare after solid organ transplantation (SOT) or blood transfusion. We present a rare case of SOT-derived and/or transfusion-associated graft-versus-host disease (TA-GVHD) in a 66-year-old man with interstitial lung disease who underwent bilateral lung transplantation (LT) from a 12-year-old female donor and required three units of packed red blood cells intraoperatively. He presented with signs and symptoms consistent with GVHD, and a bone marrow biopsy revealed an XX karyotype.

View Article and Find Full Text PDF

We are naturally chimeras. Apart from our own cells originating from the fertilized egg, placental mammals receive small numbers of maternal cells called maternal microchimerism (MMc) that persist throughout one's whole life. Not only are varying frequencies of MMc cells reported in seemingly contradicting phenomena, including immune tolerance and possible contribution to autoimmune-like disease, but frequencies are observable even among healthy littermates showing varying MMc frequencies and cell type repertoire.

View Article and Find Full Text PDF

Background: Newborn screening (NBS) for severe combined immunodeficiency (SCID) has improved the prognosis of SCID. In Japan, NBS testing (measurement of the T-cell receptor excision circles (TREC) and kappa-deleting recombination excision circles (KREC)) was launched in 2017 and has expanded nationwide in recent years. In this study, we report a Japanese patient with X-linked SCID with a novel variant identified through NBS.

View Article and Find Full Text PDF
Article Synopsis
  • Inborn errors of immunity (IEI) involve various disorders that can be hard to diagnose early, as shown in a Brazilian patient with severe combined immunodeficiency (SCID) diagnosed at 6 months old due to multiple infections.
  • After undergoing hematopoietic stem cell transplantation (HSCT), the patient experienced recurrent infections and tested positive for SARS-CoV-2 multiple times over six months.
  • Whole exome sequencing revealed a damaging genetic variant in the Janus Kinase 3 (JAK3) gene, suggesting its role in disrupting protein function and contributing to SCID's pathogenesis.
View Article and Find Full Text PDF

Sensitivity and Specificity of Chimerism Tests in Predicting Leukemia Relapse Using Increasing Mixed Chimerism.

J Mol Diagn

December 2024

Penn State Cancer Institute, Hershey, Pennsylvania; Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania. Electronic address:

Chimerism test was evaluated to predict leukemia relapse. Increasing mixed chimerism (IMC), defined as recipient increase ≥0.1% in peripheral blood total cell chimerism, was used as a surrogate of disease activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!