Objective: This laboratory study determined the surface, mechanical and chemical properties of polymethyl methacrylate (PMMA) denture resin reinforced with micron-sized Gum Arabic (GA) powder in different weight ratios.
Methods: This laboratory study was conducted at the Dental Health Department of the College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia from November 2022 to February 2023. Three experimental denture resins were prepared by incorporating GA powder in heat-polymerized PMMA powder using different wt.% (5, 10, and 20 wt.%). While pristine PMMA served as the control group. A total of ten bar-shaped specimens with dimensions of 65 mm × 10 mm × 3.5 mm were prepared for each study group. The surface properties (micro CT and SEM evaluation), mechanical properties (Nanohardness, elastic modulus and flexural strength) and chemical properties (FTIR) were conducted. The data were statistically analyzed using the one-way analysis of variance and Tukey's post hoc tests (p<0.05).
Results: The surface and bulk properties of experimental GA-reinforced PMMA resin materials deteriorated while the mechanical properties were also negatively altered using GA-based PMMA denture resin. A linear correlation was observed between weak mechanical properties and increasing wt.% of GA in denture resin.
Conclusions: The incorporation of GA powder in denture resin might not be a viable option. The surface and mechanical properties of experimental PMMA composites were adversely affected compared to the control group.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626063 | PMC |
http://dx.doi.org/10.12669/pjms.39.6.7837 | DOI Listing |
Biosens Bioelectron
January 2025
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China. Electronic address:
The exploration of the mitochondrial apoptotic pathway in living cells is of great significance for achieving tumor diagnosis and treatment. However, visualization of the mitochondrial apoptotic pathway induced by specific proteins has rarely been reported. In this paper, we designed and synthesized a fluorescent probe Cy-JQ1 based on the bromodomain-containing protein 4 (BRD4) inhibition.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, China; School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China. Electronic address:
RNA imaging technology is essential for understanding the complex RNA regulatory mechanisms and serves as a powerful tool for disease diagnosis. However, conventional RNA imaging methods often require multiple fluorescent tags for the specific labeling of individual targets, complicating both the imaging process and subsequent analysis. Herein, we develop an RNA sensor that integrates a blocked CRISPR RNA (crRNA)-based conformational switch with a controllable CRISPR activation (CRISPRa) system and apply for RNA imaging.
View Article and Find Full Text PDFACS Nano
January 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Twisted halide perovskite bilayers, a type of moiré material, show square moiré patterns with exciting optical properties. Atomic-scale structure analysis and its correlation with properties are difficult to achieve due to the extreme sensitivity of organic-inorganic halide perovskites to the illuminated electron beam in conventional/scanning transmission electron microscopy. Here, we developed a low-dose exit wave reconstruction methodology with a real-space resolution of one angstrom at ∼50 e/Å, which recovers the phase information on the moiré fringes in CHNHPbI (MAPbI) twisted perovskite bilayers at atomic scale, enabling detailed structural analysis of defects and corresponding strain distribution in such moiré materials.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
Polyoxometalates (POMs) are composed of nanometric metal-oxide anions and have rich solution chemistry. In this class, Keggin POMs have been identified as the most influential inorganic additives for aqueous nonionic soft matter systems. POMs being at the borderline of classical ions and charged colloids possess fascinating solution properties; the present work aims to delve deeper into the interactions between nanoions and nonionic soft matters from a spectroscopic point of view.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
The oxygen evolution reaction (OER) is a critical half-reaction in water splitting and metal-air cells. The sensitivity of the OER to the composition and structure of the electrocatalyst presents a significant challenge in elucidating the structure-property relationship. In this study, highly stable single-crystal cobalt carbonate hydroxide [Co(OH)CO, CoCH] was used as a model to investigate the correlations among structure, composition, and reactivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!