Background: Notopterygii Rhizoma et Radix (NRR) is commonly used for the treatment of inflammation-linked diseases. Phenethylferulate (PF) is high content in NRR crude, but its anti-inflammatory effect remains unclear. Therefore, we aimed to investigate the anti-inflammatory properties of PF and its underlying molecular mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages.
Methods: The effect of PF on cell viability was measured by MTT assay. The anti-inflammatory properties of PF were studied by detecting the levels of inflammatory mediators and cytokines using enzyme-linked immunosorbent assay (ELISA). Furthermore, the anti-inflammatory mechanisms of PF were determined by Western blot analysis.
Results: PF was not cytotoxic to RAW 264.7 macrophages at the concentrations of below 48 μM. ELISA showed that PF conspicuously inhibited overproduction of prostaglandin E (PGE), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6). Western blot analysis showed that PF remarkably suppressed overproduction of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), the phosphorylation of inhibitor of NF-κB kinase α (IκB-α), protein kinase B (Akt), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinases (JNK) and p38, as well as the degradation and subsequent nuclear translocation of p65.
Conclusions: PF is a potent inhibitor of inflammation acting on nuclear factor kappa-B (NF-κB), Akt and mitogen-activated protein kinase (MAPK) signaling pathways in LPS-stimulated RAW 264.7 macrophages. This work provides evidence for the suitability of PF as a therapeutic candidate for the management of inflammatory-mediated immune disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629144 | PMC |
http://dx.doi.org/10.1186/s12906-023-04234-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!