Low-temperature catalytic oxidation of PCDD/Fs over MnCeCoO/PPS catalytic filter.

Environ Sci Pollut Res Int

Wuxi Huaguang Environment &Energy Group Co., Ltd, Wuxi, 214131, China.

Published: December 2023

AI Article Synopsis

  • * A manganese-cerium-cobalt-oxide (Mn-Ce-Co-O) catalyst was developed on a polyphenylene sulfide (PPS) fiber and showed a 78% efficiency in breaking down harmful dioxins and a 96% conversion rate for NO at 200 °C.
  • * This innovative catalytic filter not only removes small particles (less than 1.0 μm) with low resistance but also demonstrates significant potential for improving flue gas pollution treatment processes,

Article Abstract

Catalytic destruction of nitrogen oxides (NO) combined with dust removal technique has attracted much attention, yet the application in the solid waste incineration air pollution control process is still lacking due to the complex flue gas atmosphere. In this work, the Mn-Ce-Co-O catalyst-coated polyphenylene sulfide (PPS) filter fiber with efficient dust removal and low-temperature polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) destruction has been prepared with a redox-precipitation method. The catalyst was uniformly grown around the PPS fiber with appropriate catalyst loading. The effects of several key operating parameters (e.g., reaction temperature, catalyst loading amount, and filtration velocity) on the catalytic efficiency were comprehensively investigated. The results show that the Mn-Ce-Co-O/PPS has a decomposition yield of 78.0% in PCDD/Fs and 96% in nitric oxide (NO) conversion at 200 °C. The poisoned catalytic filter exhibits a removal efficiency of 88.6% for PCDD/Fs. In addition, the catalytic filter can completely reject particles smaller than 1.0 μm with a low filtration resistance. Therefore, this efficient and energy-conserving catalytic filter shows promising applications in flue gas pollution treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-30768-2DOI Listing

Publication Analysis

Top Keywords

catalytic filter
16
dust removal
8
flue gas
8
catalyst loading
8
catalytic
6
filter
5
low-temperature catalytic
4
catalytic oxidation
4
pcdd/fs
4
oxidation pcdd/fs
4

Similar Publications

Fluorescent distinguishing flavonoid glycosides against aglycones based on the selective recognization of boric acid-functional Eu(III)-organic framework.

Talanta

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China. Electronic address:

Flavonoid glycosides are formed by dehydration condensation of aglycones and sugar molecules. Therefore, discrimination of flavonoid glycosides from their corresponding aglycones is a challenging task because they contain the same aglycone part in their molecular structures. Herein, boric acid-functional Eu(III)-organic framework (BA-Eu-MOF) was applied to discriminate flavonoid glycosides including baicalin (Bai), wogonoside (Wog), rutin (Rut), puerarin (Pue), quercitrin (Que) and astragalin (Ast) from their corresponding aglycones for the first time.

View Article and Find Full Text PDF

Harsh operating conditions imposed by vehicular applications significantly limit the utilization of proton exchange membrane fuel cells (PEMFCs) in electric propulsion systems. Improper/poor management and supervision of rapidly varying current demands can lead to undesired electrochemical reactions and critical cell failures. Among other failures, flooding and catalytic degradation are failure mechanisms that directly impact the composition of the membrane electrode assembly and can cause irreversible cell performance deterioration.

View Article and Find Full Text PDF

Exploring the Photocatalytic Efficiency of Gold Nanoparticles Deposited on Ni-Al-Zr-Layered Double Hydroxides for Selective Glucose Oxidation.

Molecules

December 2024

Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de L'énergie, 15 rue Baudelocque, FR-80000 Amiens, France.

Confronting escalating challenges in energy security and environmental sustainability has intensified interest in renewable sources for fuels and chemicals. Among the most promising alternatives, sugars derived from biomass are emerging as a cornerstone in advancing an environmentally sustainable economy. Within this framework, the development of sunlight-driven carbohydrate oxidation is of significant interest, as it enables the production of a broad spectrum of high-value, bio-sourced chemicals through eco-friendly processes.

View Article and Find Full Text PDF

Babesia bigemina is an apicomplexan parasite responsible for causing "Texas fever" in bovines. Current treatments for bovine babesiosis are hindered by several limitations, including toxicity, insufficient efficacy in eliminating the parasite, and the potential for resistance development. A promising approach to overcome these challenges is the identification of compounds that specifically target essential metabolic pathways unique to the parasite.

View Article and Find Full Text PDF

MAGPIE: A Machine Learning Approach to Decipher Protein-Protein Interactions in Human Plasma.

J Proteome Res

January 2025

Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.

Immunoprecipitation coupled to tandem mass spectrometry (IP-MS/MS) methods is often used to identify protein-protein interactions (PPIs). While these approaches are prone to false positive identifications through contamination and antibody nonspecific binding, their results can be filtered using negative controls and computational modeling. However, such filtering does not effectively detect false-positive interactions when IP-MS/MS is performed on human plasma samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!