In the recent times, one of the most crucial tasks related to water resources is the treatment of polluted water. This study reports the development of a functionalized nanofibrous membrane with enhanced filtration performance, heavy metal removal, and photocatalytic dye degradation for the effective treatment of contaminated water. The nanofibrous mats were developed by the process of electrospinning using a polymeric solution of polyacrylonitrile (PAN) reinforced with curcumin-multiwalled carbon nanotube (C-MWCNT) conjugate. The experimental trials for membrane fabrication were adapted based on the design of experiments (DoE) approach by making use of the Box-Behnken design (BBD) for a three-variable system, a component of response surface methodology (RSM). The three variable parameters selected for optimization of the electrospinning process were the dopant concentration (in weight percentage), the flow rate (in millilitre per hour), and the spinning time (in hours), respectively, and a total of 15 fibrous membranes were fabricated. The SEM analysis of the fabricated membranes revealed alterations in the surface morphology of the fibrous mats with variations in the electrospinning parameters. The infrared spectrum of the fibrous mats, validated the incorporation C-MWCNT conjugate in PAN, thereby confirming the formation of PAN/C-MWNCNT membrane. The mean flow pore size and breaking force of the PAN/C-MWCNT membranes was also obtained using a universal testing machine (UTM) and porometer, respectively. To choose the best membrane for efficient filtration experiments, the performance of each of the prepared membranes was assessed in terms of solute rejection percentage (SR%), permeate flux (PF), and pure water flux (PWF). The statistical analysis of the assessed parameters in accordance with the membranes prepared was done using the MINITAB software, and the three-dimensional (3D) surface plots were constructed using the STATISTICA software to visualize and validate the relation between each of the electrospinning parameters and the corresponding membrane performance characteristics. Similarly, the potential of the electrospun membranes for efficient heavy metal ion removal and photocatalysis were also tested independently and the optimal electrospinning parameters were determined for the same. Based on the results, it was observed that the PAN/C-MWCNT membranes could serve as potential candidates for the treatment of polluted water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-30715-1 | DOI Listing |
Environ Sci Pollut Res Int
July 2024
Centre for Nanoscience and Technology, Anna University, Chennai, 600025, India.
In the recent times, one of the most crucial tasks related to water resources is the treatment of polluted water. This study reports the development of a functionalized nanofibrous membrane with enhanced filtration performance, heavy metal removal, and photocatalytic dye degradation for the effective treatment of contaminated water. The nanofibrous mats were developed by the process of electrospinning using a polymeric solution of polyacrylonitrile (PAN) reinforced with curcumin-multiwalled carbon nanotube (C-MWCNT) conjugate.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2022
Microbiology at Interfaces Group, Manchester Metropolitan University, Manchester M15 6BH, UK.
Cadaverine is a biomolecule of major healthcare importance in periodontal disease; however, current detection methods remain inefficient. The development of an enzyme biosensor for the detection of cadaverine may provide a cheap, rapid, point-of-care alternative to traditional measurement techniques. This work developed a screen-printed biosensor (SPE) with a diamine oxidase (DAO) and multi-walled carbon nanotube (MWCNT) functionalised electrode which enabled the detection of cadaverine via cyclic voltammetry and differential pulse voltammetry.
View Article and Find Full Text PDFSensors (Basel)
January 2022
Microbiology at Interfaces Group, Manchester Metropolitan University, Manchester M1 5GD, UK.
Carbon nanomaterials have gained significant interest over recent years in the field of electrochemistry, and they may be limited in their use due to issues with their difficulty in dispersion. Enzymes are prime components for detecting biological molecules and enabling electrochemical interactions, but they may also enhance multiwalled carbon nanotube (MWCNT) dispersion. This study evaluated a MWCNT and diamine oxidase enzyme (DAO)-functionalised screen-printed electrode (SPE) to demonstrate improved methods of MWCNT functionalisation and dispersion.
View Article and Find Full Text PDFToxicology
July 2020
Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100191, China. Electronic address:
Multi-walled carbon nanotubes (MWCNTs) have promising applications in neurology depending on their unique physicochemical properties. However, there is limited understanding of their impacts on brain microvascular endothelial cells, the cells lining the vessels and maintaining the low and selective permeability of the blood-brain barrier. In this study, we examined the influence of pristine MWCNT (p-MWCNT) and carboxylated MWCNT (c-MWCNT) on permeability and tight junction tightness of murine brain microvascular endothelial cells, and investigated the potential mechanisms in the sight of hemichannel activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!