Understanding the local adaptation of crops has long been a concern of evolutionary biologists and molecular ecologists. Identifying the adaptive genetic variability in the genome is crucial not only to provide insights into the genetic mechanism of local adaptation but also to explore the adaptation potential of crops. This study aimed to identify the climatic drivers of naked barley landraces and putative adaptive loci driving local adaptation on the Qinghai-Tibetan Plateau (QTP). To this end, a total of 157 diverse naked barley accessions were genotyped using the genotyping-by-sequencing approach, which yielded 3123 high-quality SNPs for population structure analysis and partial redundancy analysis, and 37,636 SNPs for outlier analysis. The population structure analysis indicated that naked barley landraces could be divided into four groups. We found that the genomic diversity of naked barley landraces could be partly traced back to the geographical and environmental diversity of the landscape. In total, 136 signatures associated with temperature, precipitation, and ultraviolet radiation were identified, of which 13 had pleiotropic effects. We mapped 447 genes, including a known gene HvSs1. Some genes involved in cold stress and regulation of flowering time were detected near eight signatures. Taken together, these results highlight the existence of putative adaptive loci in naked barley on QTP and thus improve our current understanding of the genetic basis of local adaptation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673939 | PMC |
http://dx.doi.org/10.1038/s41437-023-00647-0 | DOI Listing |
Int J Mol Sci
December 2024
N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia.
In barley having adherent hulls, an irreversible connection between the pericarp with both palea and lemma is formed during grain maturation. A mutation in the () gene prevents this connection and leads to the formation of barley with non-adherent hulls. A genetic model of two isogenic lines was used to elucidate the genetic mechanisms of hull adhesion: a doubled haploid line having adherent hulls and its derivative with non-adherent hulls obtained by targeted mutagenesis of the gene.
View Article and Find Full Text PDFPlant Genome
December 2024
Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA.
Int J Food Microbiol
January 2025
University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, United Kingdom.
The responses to artificial spike inoculation with Fusarium culmorum were compared in 11 Tritordeum lines, two durum wheat cultivars and one naked barley cultivar. Inoculation of Tritordeum spikes led to a significant decrease in spike weight, kernel weight per spike, and kernel weight (by 18, 28, and 16 %, respectively). Durum wheat responded most strongly to inoculation, particularly with regard to spike weight and kernel weight per spike (decrease of 42 % and 53 %, respectively).
View Article and Find Full Text PDFInt J Mol Sci
May 2024
Shanghai Key Laboratory of Agricultural Genetics and Breeding (21DZ2271900), Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform (23DZ2290700), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
Barley is one of the most important cereal crops in the world, and its value as a food is constantly being revealed, so the research into and the use of barley germplasm are very important for global food security. Although a large number of barley germplasm samples have been collected globally, their specific genetic compositions are not well understood, and in many cases their origins are even disputed. In this study, 183 barley germplasm samples from the Shanghai Agricultural Gene Bank were genotyped using genotyping-by-sequencing (GBS) technology, SNPs were identified and their genetic parameters were estimated, principal component analysis (PCA) was preformed, and the phylogenetic tree and population structure of the samples were also analyzed.
View Article and Find Full Text PDFFood Chem X
June 2024
Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA.
Barley tea, a popular beverage with cultural traditions in East Asia, has long been esteemed for its flavor, aroma, thirst-quenching properties and perceived health benefits attributed to bioactive compounds. This study investigated the nutritional, bioactive, and antioxidant aspects of three commercial naked barley varieties, focusing on the impact of roasting and subsequent steeping for tea. Roasting did not affect total dietary fiber or β-glucan content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!