Ecogeographic rules denote spatial patterns in phenotype and environment that may reflect local adaptation as well as a species' capacity to adapt to change. To identify genes underlying Bergmann's Rule, which posits that spatial correlations of body mass and temperature reflect natural selection and local adaptation in endotherms, we compare 79 genomes from nine song sparrow (Melospiza melodia) subspecies that vary ~300% in body mass (17 - 50 g). Comparing large- and smaller-bodied subspecies revealed 9 candidate genes in three genomic regions associated with body mass. Further comparisons to the five smallest subspecies endemic to California revealed eight SNPs within four of the candidate genes (GARNL3, RALGPS1, ANGPTL2, and COL15A1) associated with body mass and varying as predicted by Bergmann's Rule. Our results support the hypothesis that co-variation in environment, body mass and genotype reflect the influence of natural selection on local adaptation and a capacity for contemporary evolution in this diverse species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630373PMC
http://dx.doi.org/10.1038/s41467-023-42786-2DOI Listing

Publication Analysis

Top Keywords

body mass
24
candidate genes
12
bergmann's rule
12
local adaptation
12
natural selection
8
selection local
8
associated body
8
body
6
mass
6
genes selection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!