Channel networks are key to coastal wetland functioning and resilience under climate change. Vegetation affects sediment and hydrodynamics in many different ways, which calls for a coherent framework to explain how vegetation shapes channel network geometry and functioning. Here, we introduce an idealized model that shows how coastal wetland vegetation creates more complexly branching networks by increasing the ratio of channel incision versus topographic diffusion rates, thereby amplifying the channelization feedback that recursively incises finer-scale side-channels. This complexification trend qualitatively agrees with and provides an explanation for field data presented here as well as in earlier studies. Moreover, our model demonstrates that a stronger biogeomorphic feedback leads to higher and more densely vegetated marsh platforms and more extensive drainage networks. These findings may inspire future field research by raising the hypothesis that vegetation-induced self-organization enhances the storm surge buffering capacity of coastal wetlands and their resilience under sea-level rise.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630343 | PMC |
http://dx.doi.org/10.1038/s41467-023-42731-3 | DOI Listing |
Sci Rep
December 2024
School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.
A novel adaptive model-based motion control method for multi-UAV communication relay is proposed, which aims at improving the networks connectivity and the communications performance among a fleet of ground unmanned vehicles. The method addresses the challenge of relay UAVs motion control through joint consideration with unknown multi-user mobility, environmental effects on channel characteristics, unavailable angle-of-arrival data of received signals, and coordination among multiple UAVs. The method consists of two parts: (1) Network connectivity is constructed and communication performance index is defined using the minimum spanning tree in graph theory, which considers both the communication link between ground node and UAV, and the communication link between ground nodes.
View Article and Find Full Text PDFSci Rep
December 2024
Computer Engineering Department, Lorestan University, Khorramabad, Iran.
This paper presents a slot antenna integrated with a split ring resonator (SRR) and feed line, designed to achieve a high Q-factor while maximizing channel capacity utilization. By incorporating a lens into the dielectric resonator antenna (DRA), we enhance both bandwidth and directivity, with the dielectric material's permittivity serving as a key control parameter for radiation characteristics. We explore water and ethanol as controllable dielectrics within the terahertz (THz) frequency range (0.
View Article and Find Full Text PDFSci Rep
December 2024
National University of Defense Technology, Changsha, Hunan, China.
In-band full-duplex communication has the potential to double the wireless channel capacity. However, how to efficiently transform the full-duplex gain at the physical layer into network throughput improvement is still a challenge, especially in dynamic communication environments. This paper presents a reinforcement learning-based full-duplex (RLFD) medium access control (MAC) protocol for wireless local-area networks (WLANs) with full-duplex access points.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Geology, R R Lalan College, Bhuj, India.
The Great Rann of Kachchh is a sabkha terrain with a thick succession of Quaternary to Late Holocene sediments, deposited during high sea level after the Last Glacial Maxima. Geomorphologically, the Great Rann of Kachchh is subdivided into Bet Zone, Linear Trench Zone, Great Barren Zone, and Banni Plain. The Bet zone is a slightly elevated flat surface comprising a complex network of bets and interbet channels-the geomorphic entities developed as complex interplay of sea level and coseismic tectonic activity during the Holocene.
View Article and Find Full Text PDFSci Rep
December 2024
College of Electronic Engineering, National University of Defense Technology, Hefei, 230000, China.
Spectrum sensing is a key technology and prerequisite for Transform Domain Communication Systems (TDCS). The traditional approach typically involves selecting a working sub-band and maintaining it without further changes, with spectrum sensing being conducted periodically. However, this approach presents two main issues: on the one hand, if the selected working band has few idle channels, TDCS devices are unable to flexibly switch sub-bands, leading to reduced performance; on the other hand, periodic sensing consumes time and energy, limiting TDCS's transmission efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!