Rationale And Objectives: To develop a fully automated deep-learning (DL) model using digital radiography (DR) with relatively high accuracy for predicting the efficacy of non-vascularized fibular grafting (NVFG) and identifying suitable patients for this procedure.
Materials And Methods: A retrospective analysis was conducted on osteonecrosis of femoral head patients who underwent NVFG between June 2009 and June 2021. All patients underwent standard preoperative anteroposterior (AP) and frog-lateral (FL) DR. Subsequently, the radiographs were pre-processed and labeled based on the follow-up results. The dataset was randomly divided into training and testing datasets. The DL-based prediction model was developed in the training dataset and its diagnostic performance was evaluated using the testing dataset.
Results: A total of 339 patients with 432 hips were included in this study, with a hip preservation success rate of 71.52% as of June 2023. The hips were randomly divided into a training dataset (n = 324) and a testing dataset (n = 108). The ensemble model in predicting the efficacy of NVFG, reaching an accuracy of 78.9%, a precision of 78.7%, a recall of 96.0%, a F1-score of 86.5%, and an area under the curve (AUC) of 0.780. FL views (AUC, 0.71) exhibited better performance compared to AP views (AUC, 0.66).
Conclusion: The proposed DL model using DR enables automatic and efficient prediction of NVFG efficacy without additional clinical and financial burden. It can be seamlessly integrated into various clinical scenarios, serving as a practical tool to identify suitable patients for NVFG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acra.2023.10.023 | DOI Listing |
Self-regulated learning (SRL) has been regarded as one of the indispensable factors affecting students' academic success in online learning environments. However, the current understanding of the mechanism/causes of SRL in online ill-structured problem-solving remains insufficient. This study, therefore, examines the configural causal effects of goal attributes, motivational beliefs, creativity, and grit on self-regulated learning.
View Article and Find Full Text PDFBiol Direct
January 2025
School of Medicine, South China University of Technology, Guangzhou, 510006, China.
Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.
Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.
Biomark Res
January 2025
Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, Taiwan.
Background: Up to 23% of breast cancer patients recurred within a decade after trastuzumab treatment. Conversely, one trial found that patients with low HER2 expression and metastatic breast cancer had a positive response to trastuzumab-deruxtecan (T-Dxd). This indicates that relying solely on HER2 as a single diagnostic marker to predict the efficacy of anti-HER2 drugs is insufficient.
View Article and Find Full Text PDFOrphanet J Rare Dis
December 2024
Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Meier-Gorlin syndrome (MGORS) is a rare autosomal inherited form of primordial dwarfism. Pathogenic variants in 13 genes involved in DNA replication initiation have been identified in this disease, but homozygous intronic variants have never been reported. Additionally, whether growth hormone (GH) treatment can increase the height of children with MGORS is unclear.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).
Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!