Establishing an effective metal-free photocatalyst for sustainable applications remains a huge challenge. Herein, we developed ultrathin oxygen-doped g-CN nanosheets with carbon defects (OCvN) photocatalyst via a facile gas bubble template-assisted thermal copolymerization method. A series of OCvN with different dopant amounts ranging from 0 to 10% were synthesized and used as photocatalysts under illumination of low-power (2 × 18 W, 0.18 mW/cm) and commercially available energy-saving light bulbs. Upon testing for photocatalytic inactivation, the best-performing sample, OCvN-3, demonstrated an astonishing disinfection activity of over 7-log reduction after 3 h of illumination, boasting an 18-fold improvement in its antibacterial activity compared to that of pristine g-CN. The enhanced performance was attributed to the synergistic effects of increased surface area, extended visible light harvesting, improved electronic conductivity, and ultralow resistance to charge transfer. This study successfully introduced a green photocatalyst that demonstrates the most effective disinfection performance ever recorded among metal-free g-CN materials. Its disinfection capabilities are comparable to those of metal-based photocatalysts when they are exposed to low-power light.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c10243 | DOI Listing |
Life Metab
October 2022
State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
Seipin plays a vital role in lipid droplet homeostasis, and its deficiency causes congenital generalized lipodystrophy type II in humans. It is not known whether the physiological defects are all caused by cellular lipid droplet defects. Loss-of-function mutation of , the seipin ortholog, causes embryonic lethality and lipid droplet abnormality.
View Article and Find Full Text PDFSmall
January 2025
Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China.
In recent years, carbon-based printable mesoscopic perovskite solar cells (p-MPSCs) without hole transport layers have garnered considerable interest because of their outstanding benefits in terms of stability and cost. However, the use of carbon electrodes instead of hole transport materials and noble metal electrodes leads to energy level mismatch, which limits the power conversion efficiency (PCE) of p-MPSCs. In this work, a molecular doping strategy is proposed employing cyclopentylmethanamine to passivate surface and subsurface crystal defects in perovskite layers while inducing an energy shift toward the p-type in the perovskite region within carbon electrodes.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China.
Formamidinium lead iodide (FAPbI) perovskite films, ensuring optically active phase purity with uniform crystal orientation, are ideal for photovoltaic applications. However, the optically active α-FAPbI phase is easy to degrade into δ-phase due to numerous defects within randomly oriented films. Here, a "quasi-2D" perovskite template is pre-deposited on the film surface within the crystallization process based on the two-step preparation technology, which directly induced pure and highly orientated crystallization of α-FAPbI across the downward growth process.
View Article and Find Full Text PDFChemphyschem
January 2025
Chinese Academy of Sciences, Institute of Coal Chemistry, 27 South Taoyuan Road, Taiyuan, Shanxi, P.R.China, 030001, Taiyuan, CHINA.
Electric double layer capacitors (EDLC) require large specific surface area to provide high power density. The generation of pores increases the electrochemical capacitance with more graphitic edge planes exposed to the electrolyte. Conventional theory believes this increasing in capacitance is owed to the increased specific surface area, but our work uncovers another mechanism.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, China.
The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!