High-throughput clonal tracking in patients under hematopoietic stem cell gene therapy with integrating vector is instrumental in assessing bio-safety and efficacy. Monitoring the fate of millions of transplanted clones and their progeny across differentiation and proliferation over time leverages the identification of the vector integration sites, used as surrogates of clonal identity. Although γ-tracking retroviral insertion sites (γ-TRIS) is the state-of-the-art algorithm for clonal identification, the computational drawbacks in the tracking algorithm, based on a combinatorial all-versus-all strategy, limit its use in clinical studies with several thousands of samples per patient. We developed the first clonal tracking graph database, InCliniGene (https://github.com/calabrialab/InCliniGene), that imports the output files of γ-TRIS and generates the graph of clones (nodes) connected by arches if two nodes share common genomic features as defined by the γ-TRIS rules. Embedding both clonal data and their connections in the graph, InCliniGene can track all clones longitudinally over samples through data queries that fully explore the graph. This approach resulted in being highly accurate and scalable. We validated InCliniGene using an in vitro dataset, specifically designed to mimic clinical cases, and tested the accuracy and precision. InCliniGene allows extensive use of γ-TRIS in large gene therapy clinical applications and naturally realizes the full data integration of molecular and genomics data, clinical and treatment measurements and genomic annotations. Further extensions of InCliniGene with data federation and with application programming interface will support data mining toward precision, personalized and predictive medicine in gene therapy. Database URL: https://github.com/calabrialab/InCliniGene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630073 | PMC |
http://dx.doi.org/10.1093/database/baad069 | DOI Listing |
Blood Cancer Discov
January 2025
Princess Máxima Center, Utrecht, Netherlands.
In pediatric hematopoietic cell transplantation (HCT) recipients, transplanted donor cells may need to function far beyond normal human lifespan. Here, we investigated the risk of clonal hematopoiesis (CH) in 144 pediatric long-term HCT survivors and 258 non-transplanted controls. CH was detected in 16% of HCT recipients and 8% of controls, at variant allele frequencies (VAFs) of 0.
View Article and Find Full Text PDFmSystems
January 2025
Institute for Infection Prevention and Control, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
The surveillance of mobile genetic elements facilitating the spread of antimicrobial resistance genes has been challenging. Here, we tracked both clonal and plasmid transmission in colistin- and carbapenem-resistant using short- and long-read sequencing technologies. We observed three clonal transmissions, all containing Incompatibility group (Inc) L plasmids and New Delhi metallo-beta-lactamase , although not co-located on the same plasmid.
View Article and Find Full Text PDFWhile the genetic paradigm of cancer etiology has proven powerful, it remains incomplete as evidenced by the widening spectrum of non-cancer cell-autonomous "hallmarks" of cancer. Studies have demonstrated the commonplace presence of high oncogenic mutational burdens in homeostatically-stable epithelia. Hence, the presence of driver mutations alone does not result in cancer.
View Article and Find Full Text PDFJ Infect Public Health
December 2024
Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey. Electronic address:
Background: Drug-resistant Group A beta-hemolytic streptococci remain significant infectious agents globally. This study investigated the major S. pyogenes strains responsible for infections in Türkiye and their susceptibility to beta-lactam and macrolide antibiotics.
View Article and Find Full Text PDFNat Commun
January 2025
Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
Ex vivo expansion of hematopoietic stem cells (HSC) requires the maintenance of a stemness state while cells are proliferating. This can be achieved via exposure to UM171 which leads to the degradation of chromatin modifiers and prevents the loss of key epigenetic marks. However, the chromatin landscape varies across populations within the hematopoietic system and the effect of UM171 on self-renewal and differentiation potential of different hematopoietic progenitor cells is less characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!