Interconnections between mA RNA modification, RNA structure, and protein-RNA complex assembly.

Life Sci Alliance

Structural and Computational Biology Unit, EMBL Heidelberg, Heidelberg, Germany

Published: January 2024

Protein-RNA complexes exist in many forms within the cell, from stable machines such as the ribosome to transient assemblies like the spliceosome. All protein-RNA assemblies rely on spatially and temporally coordinated interactions between specific proteins and RNAs to achieve a functional form. RNA folding and structure are often critical for successful protein binding and protein-RNA complex formation. RNA modifications change the chemical nature of a given RNA and often alter its folding kinetics. Both these alterations can affect how and if proteins or other RNAs can interact with the modified RNA and assemble into complexes. N-methyladenosine (mA) is the most common base modification on mRNAs and regulatory noncoding RNAs and has been shown to impact RNA structure and directly modulate protein-RNA interactions. In this review, focusing on the mechanisms and available quantitative information, we discuss first how the METTL3/14 mA writer complex is specifically targeted to RNA assisted by protein-RNA and other interactions to enable site-specific and co-transcriptional RNA modification and, once introduced, how the mA modification affects RNA folding and protein-RNA interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629537PMC
http://dx.doi.org/10.26508/lsa.202302240DOI Listing

Publication Analysis

Top Keywords

protein-rna interactions
12
rna
9
rna modification
8
modification rna
8
rna structure
8
protein-rna complex
8
proteins rnas
8
rna folding
8
protein-rna
7
interconnections rna
4

Similar Publications

FTDMP is a software framework for biomolecular docking and scoring. It can perform docking of subunits containing one or more protein, DNA, or RNA chains, followed by subsequent scoring of the resulting models. FTDMP can also be used for the ranking of user-provided models of biomolecular complexes, generated by any structure prediction method.

View Article and Find Full Text PDF

Protein-RNA interactions play important biological roles and hence reactive RNA probes for cross-linking with proteins are important tools in their identification and study. To this end, we designed and synthesized 5'-O-triphosphates bearing a reactive squaramate group attached to position 5 of cytidine or position 7 of 7-deazaadenosine and used them as substrates for polymerase synthesis of modified RNA. In vitro transcription with T7 RNA polymerase or primer extension using TGK polymerase was used for synthesis of squaramate-modified RNA probes which underwent covalent bioconjugations with amine-linked fluorophore and lysine-containing peptides and proteins including several viral RNA polymerases or HIV reverse transcriptase.

View Article and Find Full Text PDF

Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.

View Article and Find Full Text PDF

LncRNA CRNDE and HOTAIR: Molecules behind the scenes in the progression of gastrointestinal cancers through regulating microRNAs.

Pathol Res Pract

December 2024

Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq.

Gastrointestinal (GI) cancers, such as gastric cancer, hepatocellular carcinoma, colorectal cancer, and esophageal cancer, pose a significant medical and economic burden globally, accounting for the majority of new cancer cases and deaths each year. A lack of knowledge about the molecular mechanisms of GI cancers is reflected in the low efficacy of treatment for individuals with late stage and recurring illness. Understanding the molecular pathways that promote the growth of GI cancers may open doors for their therapy.

View Article and Find Full Text PDF

Rationalizing the effects of RNA modifications on protein interactions.

Mol Ther Nucleic Acids

December 2024

Centre for Human Technologies (CHT), RNA System Biology Lab, Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy.

RNA modifications play a crucial role in regulating gene expression by altering RNA structure and modulating interactions with RNA-binding proteins (RBPs). In this study, we explore the impact of specific RNA chemical modifications-N-methyladenosine (m⁶A), A-to-I editing, and pseudouridine (Ψ)-on RNA secondary structure and protein-RNA interactions. Utilizing genome-wide data, including RNA secondary structure predictions and protein-RNA interaction datasets, we classify proteins into distinct categories based on their binding behaviors: modification specific and structure independent, or modification unspecific and structure dependent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!