Objective: Type 2 diabetes mellitus (T2DM) is a common metabolic disorder with rising incidence worldwide. This study explored the anti-T2DM role of vitamin D, thereby providing novel therapeutic strategies.

Methods: C57BL/6 J mice and MIN6 cells were used to induce T2DM and damaged β-cell models, respectively. Body weights, fasting blood glucose, and fasting insulin were measured in mice. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were conducted on mice. Lipid indices (TG, TC, LDL-C, and HDL-C) were detected in mouse serum. Hematoxylin-eosin staining was used to evaluate pancreatic tissue injury. ELISA was used to assess insulin and oxidative stress (OS) markers (MDA, GSH, and SOD) in mice and MIN6 cells. Production of ROS was detected in islet β-cells and MIN6 cells. Cell viability and apoptosis were evaluated using CCK-8 and flow cytometry, respectively. QRT-PCR and western blotting were used to detect pro-inflammatory factors (TNF-α and IL-6) and endoplasmic reticulum stress (ERS) markers (CHOP and GRP78), respectively.

Results: Vitamin D reduced body weights, fasting blood glucose, and insulin and ameliorated glucose tolerance and insulin sensitivity in T2DM mice. Besides, vitamin D decreased serum TG, TC, LDL-C, and increased HDL-C in T2DM mice. Vitamin D inhibited pancreatic histopathological injury, cell apoptosis, OS, and β-cell decline in T2DM mice. Moreover, vitamin D alleviated cell death, insufficient insulin secretion, inflammation, OS, and ERS in damaged MIN6 cells. Notably, N-acetyl-L-cysteine (an OS inhibitor) enhanced these effects of vitamin D.

Conclusions: Vitamin D relieved T2DM symptoms by alleviating OS-induced β-cell impairment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10700019PMC
http://dx.doi.org/10.1055/a-2191-9969DOI Listing

Publication Analysis

Top Keywords

min6 cells
16
t2dm mice
12
mice vitamin
12
vitamin
8
type diabetes
8
diabetes mellitus
8
β-cell impairment
8
mice min6
8
body weights
8
weights fasting
8

Similar Publications

Betagenin ameliorates diabetes by inducing insulin secretion and β-cell proliferation.

J Biol Chem

January 2025

Division of Experimental Animal, Hidaka Branch, Biomedical Research Center, Saitama Medical University, Saitama, Japan; Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan. Electronic address:

Recent success with the use of glucagon-like peptide-1 (GLP-1) receptor analogs and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of patients with diabetes has highlighted the role of the intestine as an endocrine organ. Gut-derived hormones, including GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and ghrelin, have important roles in the control of energy metabolism and food intake, and are associated with the metabolic syndrome. In this study, we isolated and identified a new intestine-derived hormone, betagenin, and showed that it stimulates insulin secretion and β-cell proliferation and suppresses β-cell apoptosis.

View Article and Find Full Text PDF

Roles for the long non-coding RNA / in pancreatic beta cell function.

iScience

January 2025

Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK.

Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of beta cell function. Here, we show that an lncRNA-transcribed antisense to Pax6, annotated as Pax6os1/PAX6-AS1, was upregulated by high glucose concentrations in human as well as murine beta cell lines and islets. Elevated expression was also observed in islets from mice on a high-fat diet and patients with type 2 diabetes.

View Article and Find Full Text PDF

Fabrication of phospholipid polymer-modified alginate hydrogels for bioartificial pancreas.

J Biosci Bioeng

January 2025

Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. Electronic address:

The bioartificial pancreas, composed of a semi-permeable hydrogel encapsulating insulin-secreting cells, has attracted attention as a treatment for type 1 diabetes. In this study, we developed phospholipid polymer-modified alginate hydrogel beads that encapsulated spheroids of the pancreatic beta cell line MIN6. The hydrogel beads were composed of methacrylated alginic acid, which enabled both ionic and covalent cross-linking, resulting in a hydrogel that was more stable than conventional alginate hydrogels.

View Article and Find Full Text PDF

Type 1 diabetes mellitus (T1DM), known as insulin-dependent diabetes mellitus, is characterized by persistent hyperglycemia resulting from damage to the pancreatic β cells and an absolute deficiency of insulin, leading to multi-organ involvement and a poor prognosis. The progression of T1DM is significantly influenced by oxidative stress and apoptosis. The natural compound eugenol (EUG) possesses anti-inflammatory, anti-oxidant, and anti-apoptotic properties.

View Article and Find Full Text PDF

Mesenchymal stem cell conditioned medium improves hypoxic injury to protect islet graft function.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: Islet transplantation is one of the most promising curative methods for type 1 diabetes mellitus (T1DM), but early hypoxic death of the graft post-transplantation impedes successful treatment. To improve the efficacy of islet transplantation and enhance islet cell resistance to hypoxia, reducing hypoxic injury before revascularization is crucial. Mesenchymal stem cells (MSCs) are known to regulate immune responses and protect against hypoxic damage through paracrine mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!