A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of breath-holding spells based on electrocardiographic parameters using machine-learning model. | LitMetric

Background: Breath-holding spells (BHS) are common in infancy and early childhood and may appear like seizures. Factors such as autonomic dysfunction and iron deficiency anemia are thought to contribute to the incidence of BHS. In this study, electrocardiographic (ECG) parameters of patients with BHS were compared to those of healthy, normal children. Logistic regression and machine-learning (ML) models were then created to predict these spells based on ECG characteristics.

Methods: In this case-control study, 52 BHS children have included as the case and 150 healthy children as the control group. ECG was taken from all children along with clinical examinations. Multivariate logistic regression model was used to predict BHS occurrence based on ECG parameters. ML model was trained and validated using the Gradient-Boosting algorithm, in the R programming language.

Results: In BHS and control groups, the average age was 11.90 ± 6.63 and 11.33 ± 6.17 months, respectively (p = .58). Mean heart rate, PR interval, and QRS interval on ECGs did not differ significantly between the two groups. BHS patients had significantly higher QTc, QTd, TpTe, and TpTe/QT (all p-values < .001). Evaluation of the ML model for prediction of BHS, fitting on the testing data showed AUC, specificity, and sensitivity of 0.94, 0.90, and 0.94 respectively.

Conclusion: There are repolarization changes in patients with BHS, as the QTc, QTd, TpTe, and TpTe/QT ratio were significantly higher in these patients, which might be noticeable for future arrhythmia occurrence. In this regard, we developed a successful ML model to predict the possibility of BHS in suspected subjects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770810PMC
http://dx.doi.org/10.1111/anec.13093DOI Listing

Publication Analysis

Top Keywords

breath-holding spells
8
spells based
8
ecg parameters
8
logistic regression
8
based ecg
8
bhs
7
prediction breath-holding
4
based electrocardiographic
4
electrocardiographic parameters
4
parameters machine-learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!