Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A limitation of the implementation of cadmium chalcogenide quantum dots (QDs) in charge transfer systems is the efficient removal of photogenerated holes. Rapid hole transfer has typically required the functionalization of hole acceptors with groups that can coordinate to the surface of the QD. In addition to being synthetically limiting, this strategy also necessitates a competitive binding equilibrium between the hole acceptor and native, solubilizing ligands on the nanocrystal. Here we show that the incorporation of oxygen vacancies into polyoxovanadate-alkoxide clusters improves hole transfer kinetics by promoting surface interactions between the metal oxide assembly and the QD. Investigating the reactivity of oxygen-deficient clusters with phosphonate-capped QDs reveals reversible complexation of the POV-alkoxide with a phosphonate ligand at the nanocrystal surface. These findings reveal a new method of facilitating QD-hole acceptor association that bypasses the restrictions of exchange interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683070 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.3c02749 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!