Lithium-ion batteries are widely used in modern society. Accurate modeling and prognosis are fundamental to achieving reliable operation of lithium-ion batteries. Accurately predicting the end-of-discharge (EOD) is critical for operations and decision-making when they are deployed to critical missions. Existing data-driven methods have large model parameters, which require a large amount of labeled data and the models are not interpretable. Model-based methods need to know many parameters related to battery design, and the models are difficult to solve. To bridge these gaps, this study proposes a physics-informed neural network (PINN), called battery neural network (BattNN), for battery modeling and prognosis. Specifically, we propose to design the structure of BattNN based on the equivalent circuit model (ECM). Therefore, the entire BattNN is completely constrained by physics. Its forward propagation process follows the physical laws, and the model is inherently interpretable. To validate the proposed method, we conduct the discharge experiments under random loading profiles and develop our dataset. Analysis and experiments show that the proposed BattNN only needs approximately 30 samples for training, and the average required training time is 21.5 s. Experimental results on three datasets show that our method can achieve high prediction accuracy with only a few learnable parameters. Compared with other neural networks, the prediction MAEs of our BattNN are reduced by 77.1%, 67.4%, and 75.0% on three datasets, respectively. Our data and code will be available at: https://github.com/wang-fujin/BattNN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2023.3329368 | DOI Listing |
Brain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFNeuroradiology
January 2025
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.
Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.
Langmuir
January 2025
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.
Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.
Snails belonging to the genus Biomphalaria serve as obligatory intermediate hosts for the trematode Schistosoma mansoni, the causative agent for the most widespread form of schistosomiasis. The simpler nervous systems of gastropod molluscs, such as Biomphalaria, provide advantageous models for investigating neural responses to infection at the cellular and network levels. The present study examined neuropeptides related to cholecystokinin (CCK), a major multifunctional regulator of central nervous system (CNS) function in mammals.
View Article and Find Full Text PDFToxicol Pathol
January 2025
Charles River Laboratories, Edinburgh, UK.
Thyroid tissue is sensitive to the effects of endocrine disrupting substances, and this represents a significant health concern. Histopathological analysis of tissue sections of the rat thyroid gland remains the gold standard for the evaluation for agrochemical effects on the thyroid. However, there is a high degree of variability in the appearance of the rat thyroid gland, and toxicologic pathologists often struggle to decide on and consistently apply a threshold for recording low-grade thyroid follicular hypertrophy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!