Finding optimal paths in connected graphs requires determining the smallest total cost for traveling along the graph's edges. This problem can be solved by several classical algorithms, where, usually, costs are predefined for all edges. Conventional planning methods can, thus, normally not be used when wanting to change costs in an adaptive way following the requirements of some task. Here, we show that one can define a neural network representation of path-finding problems by transforming cost values into synaptic weights, which allows for online weight adaptation using network learning mechanisms. When starting with an initial activity value of one, activity propagation in this network will lead to solutions, which are identical to those found by the Bellman-Ford (BF) algorithm. The neural network has the same algorithmic complexity as BF, and, in addition, we can show that network learning mechanisms (such as Hebbian learning) can adapt the weights in the network augmenting the resulting paths according to some task at hand. We demonstrate this by learning to navigate in an environment with obstacles as well as by learning to follow certain sequences of path nodes. Hence, the here-presented novel algorithm may open up a different regime of applications where path augmentation (by learning) is directly coupled with path finding in a natural way.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2023.3327103DOI Listing

Publication Analysis

Top Keywords

neural network
12
network learning
8
learning mechanisms
8
learning
7
network
7
combining optimal
4
path
4
optimal path
4
path search
4
search task-dependent
4

Similar Publications

Background: The diagnosis and treatment of epilepsy continue to face numerous challenges, highlighting the urgent need for the development of rapid, accurate, and non-invasive methods for seizure detection. In recent years, advancements in the analysis of electroencephalogram (EEG) signals have garnered widespread attention, particularly in the area of seizure recognition.

Methods: A novel hybrid deep learning approach that combines feature fusion for efficient seizure detection is proposed in this study.

View Article and Find Full Text PDF

Background: The progression and severity of periodontitis (PD) are associated with the release of extracellular vesicles by periodontal tissue cells. However, the precise mechanisms through which exosome-related genes (ERGs) influence PD remain unclear. This study aimed to investigate the role and potential mechanisms of key exosome-related genes in PD using transcriptome profiling at the single-cell level.

View Article and Find Full Text PDF

Gene‒gene interactions play pivotal roles in disease pathogenesis and are fundamental in the development of targeted therapeutics, particularly through the elucidation of oncogenic gene drivers in cancer. The systematic analysis of pathways and gene interactions is critical in the drug discovery process for various cancer subtypes. SPAG5, known for its role in spindle formation during cell division, has been identified as an oncogene in several cancers, although its specific impact on AML remains underexplored.

View Article and Find Full Text PDF

Background: The ability to non-invasively measure left atrial pressure would facilitate the identification of patients at risk of pulmonary congestion and guide proactive heart failure care. Wearable cardiac monitors, which record single-lead electrocardiogram data, provide information that can be leveraged to infer left atrial pressures.

Methods: We developed a deep neural network using single-lead electrocardiogram data to determine when the left atrial pressure is elevated.

View Article and Find Full Text PDF

Accurate estimation of interfacial tension (IFT) between nitrogen and crude oil during nitrogen-based gas injection into oil reservoirs is imperative. The previous research works dealing with prediction of IFT of oil and nitrogen systems consider synthetic oil samples such n-alkanes. In this work, we aim to utilize eight machine learning methods of Decision Tree (DT), AdaBoost (AB), Random Forest (RF), K-nearest Neighbors (KNN), Ensemble Learning (EL), Support Vector Machine (SVM), Convolutional Neural Network (CNN) and Multilayer Perceptron Artificial Neural Network (MLP-ANN) to construct data-driven intelligent models to predict crude oil - nitrogen IFT based upon experimental data of real crude oils samples encountered in underground oil reservoirs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!