A murine multiple-injury model for the study of thromboinflammation.

J Trauma Acute Care Surg

From the Division of Vascular and Endovascular Surgery (T.A.M.), Mayo Clinic, Rochester, Minnesota; Division of Acute Care Surgery (J.G.), Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey; Division of Trauma, Critical Care, and Acute Care Surgery (S.M.N., R.T., M.S.P.), and Department of Biostatistics (G.M.S., K.R.B.), Mayo Clinic, Rochester, Minnesota; Division of Hematology (J.-F.D.), Bloodworks Northwest, University of Washington, Seattle, Washington; Department of Surgery (R.A.K.), R. Adams Cowley Shock Trauma Center, Baltimore, Maryland; Department of Biochemistry and Molecular Biology (M.T.A.), Mayo Clinic, Rochester; and Department of Internal Medicine (J.K.), University of Michigan, Ann Arbor, Minnesota.

Published: February 2024

Introduction: Neutrophil extracellular traps (NETs) contribute to trauma-induced coagulopathy. We aimed to develop a murine multiple-injury model that induces thrombo-inflammatory response, that is, NETosis and accelerated thrombin generation.

Methods: Wild-type male mice (n = 10, aged 8-12 weeks) underwent multiple injuries (gastrocnemius crush, femur fracture, and laparotomy) and were compared with an uninjured control group (n = 10). Mice were euthanized by cardiac puncture performed 3 hours after injury. Whole blood samples were immediately processed to platelet poor plasma for thrombin generation kinetics (calibrated automated thrombogram), myeloperoxidase (MPO), and von Willebrand factor quantification. Immunohistochemistry of lung tissue was performed to assess for citrullinated histone 3 (CitH3) and MPO. A NETosis cluster was defined as 3+ neutrophils staining for CitH3 at 400× magnification (CitH3 cluster). Data were presented either as mean (SD) or median (interquartile range) with p < 0.05 significant. Sham and trauma treated animals were compared by the two-sample Wilcoxon rank-sum test.

Results: Animals subjected to multiple injuries had accelerated thrombin generation compared with controls with greater peak height (61.3 [41.2-73.2] vs. 28.4 [19.5-37.5] nM, p = 0.035) and shorter time to peak (3.37 [2.81-3.81] vs. 4.5 [4.08-4.75] minutes, p = 0.046). Markers of neutrophil activation were greater following multiple injuries than in controls (MPO, 961.1 [858.1-1116.8] vs. 481.3 [438.0-648.9] ng/mL; p = 0.004). NETosis, as evidenced by the aforementioned defined number of CitH3 clusters in the lung, was greater in multiple-injury animals than in controls (mean [SD], 3 [2.9] vs. 0.2 [0.7]; p = 0.009).

Conclusion: This is the first study to demonstrate that NETosis and accelerated thrombin generation can be induced using a murine multiple-injury model, as early as 3 hours following injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10872879PMC
http://dx.doi.org/10.1097/TA.0000000000004179DOI Listing

Publication Analysis

Top Keywords

murine multiple-injury
12
multiple-injury model
12
accelerated thrombin
12
multiple injuries
12
thrombin generation
12
netosis accelerated
8
hours injury
8
model study
4
study thromboinflammation
4
thromboinflammation introduction
4

Similar Publications

Purpose: Alteration of visual acuity in wet age-related macular degeneration (AMD) is mostly driven by vascular endothelial growth factor A (VEGF-A)-induced edema from leaky newly forming blood vessels below the retina layers. To date, all therapies aimed at alleviation of this process have relied on inhibition of VEGF-A activity. Although effective in preventing vascular leak and edema, this approach also leads to the loss of normal vasculature and multiple related side effects.

View Article and Find Full Text PDF

Intracellular CIRP promotes liver regeneration via STAT3 signaling pathway activation after partial hepatectomy in mice.

Int J Mol Med

March 2025

National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.

Cold‑inducible RNA‑binding protein (CIRP) is a cold shock protein implicated in the regulation of multiple biological processes depending on its cellular localization. However, to the best of our knowledge, the role of CIRP in liver regeneration and injury after hepatectomy has not been investigated. The present study was therefore designed to explore whether CIRP is involved in liver regeneration after hepatectomy and its specific role and underlying molecular mechanism.

View Article and Find Full Text PDF

AENK ameliorates cognitive impairment and prevents Tau hyperphosphorylation through inhibiting AEP-mediated cleavage of SET in rats with ischemic stroke.

J Neurochem

January 2025

Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Brain damage induced by ischemia promotes the development of cognitive dysfunction, thus increasing the risk of dementia such as Alzheimer's disease (AD). Studies indicate that cellular acidification-triggered activation of asparagine endopeptidase (AEP) plays a key role in ischemic brain injury, through multiple molecular pathways, including cleavage of its substrates such as SET (inhibitor 2 of PP2A, I ) and Tau. However, whether direct targeting AEP can effectively prevent post-stroke cognitive impairment (PSCI) remains unanswered.

View Article and Find Full Text PDF

Objective: This study aimed to explore the active components and potential mechanism of Tanre Qing Injection (TRQI) in the treatment of Acute Respiratory Distress Syndrome (ARDS) using network pharmacology, molecular docking, and animal experiments.

Methods: The targets of active ingredients were identified using the TCMSP and Swiss Target Prediction databases. The targets associated with ARDS were obtained from the GeneCards database, Mala card database, and Open Targets Platform.

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells (BMSCs) -derived extracellular vesicles (EVs), especially small EVs (sEVs), were vastly reported to enable multiple restorative effects on ischemic stroke, yet the protective mechanism of blood-brain barrier (BBB) has not been fully illustrated. In the present study, we investigated the therapeutic effects and mechanism of BMSCs-derived sEVs on BBB injury after ischemic stroke. In-vivo, administering sEVs to transient middle cerebral artery occlusion (tMCAo) mice mitigated the brain infarct volume, BBB permeability and neural apoptosis, and improved the cerebral blood flow perfusion and neurological function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!