A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic evolutionary characteristics and influence mechanisms of carbon emission intensity in counties of the Yangtze River Delta, China. | LitMetric

Clarifying the intrinsic mechanism of county carbon emission intensity (CEI) is essential for guiding the realization of a low-carbon economy as well as for the strategic goals of carbon peaking and carbon neutrality. However, at present, scholars mostly focus on provincial and city scales, with the identification of influencing factors and spatial effect mechanisms of CEI rarely included in the analysis framework. Herein, with the help of three spatial weight matrices, the spatial autocorrelation, the "F + S" influence factor identification method, and the spatial panel econometric model were used to analyze the evolutionary paths and influencing factors of CEI for 209 counties in the Yangtze River Delta (YRD) from 2007 to 2020. The results show that (1) the CEI of the YRD decreased from 1.998t/10 RMB to 0.858t/10 RMB. Furthermore, the spatial pattern was low in the southeast and high in the northwest, with high-value areas concentrated in municipal districts and resource-based counties. (2) Moran's I spatial autocorrelation index indicated significant spatial clustering of county CEI. (3) Financial science and technology expenditure, industrial structure, share of urban built-up land, and the urban-rural income gap affected the change in CEI and its spatial effect, whereas total imports and exports had a significant negative effect on local CEI. Therefore, to achieve China's "double carbon" goal, it is necessary to consider the five development concepts as the core, strengthen inter-county exchanges and collaboration, as well as promote collaborative management of the ecological environment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-30392-0DOI Listing

Publication Analysis

Top Keywords

carbon emission
8
emission intensity
8
counties yangtze
8
yangtze river
8
river delta
8
influencing factors
8
spatial
8
spatial autocorrelation
8
cei
7
dynamic evolutionary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!