A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring the Effects of Liquid Marbles' Deformation on Their Rolling Resistance. | LitMetric

Exploring the Effects of Liquid Marbles' Deformation on Their Rolling Resistance.

Langmuir

State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China.

Published: November 2023

Liquid marbles (LMs) are nonwetting droplets manufactured by encapsulating droplets with micro- or nanoscale particles. These marbles are widely used as transport carriers for digital microfluidics due to their rapid displacement velocity and leak-free transport. An improved understanding of the resistance mechanism of rolling LMs is crucial for their transport and manipulation. In this study, we investigated the rolling resistance of LMs obtained with different powders and volumes using a high-speed camera. Our findings suggest that the deformation of liquid marbles would hinder their rolling by a resistance torque. To depict this resistance effect, we propose a theoretical model , where is the rolling resistance of marbles, λ is the deflection coefficient, Bo is the Bond number, and (ε is the contact surface deformation) that accurately predicts the relationship between deformation and rolling resistance, which is supported by our experimental results. To further validate our theoretical model, we conducted three independent experiments: shape detection of prepared LMs, measuring the elastic force of LMs, and detecting the diffusive motion of the encapsulating particles. Furthermore, we discuss three factors that affect the rolling resistance: the volume of the marbles, the type and size of the encapsulating particles, and the substrate roughness. This comprehensive study not only generalizes the mechanism of deformation hindering the rolling of liquid marbles but also provides a theoretical framework to predict the relationship between the deformation and rolling resistance. These findings have practical implications for improving the manipulation efficiency and advancing the use of LMs as microfluidic carriers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c02617DOI Listing

Publication Analysis

Top Keywords

rolling resistance
28
deformation rolling
12
liquid marbles
12
rolling
9
resistance
9
theoretical model
8
relationship deformation
8
encapsulating particles
8
deformation
6
marbles
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!