Using Machine Learning to Predict Response to Image-guided Therapies for Hepatocellular Carcinoma.

Radiology

From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.).

Published: November 2023

Interventional oncology is a rapidly growing field with advances in minimally invasive image-guided local-regional treatments for hepatocellular carcinoma (HCC), including transarterial chemoembolization, transarterial radioembolization, and thermal ablation. However, current standardized clinical staging systems for HCC are limited in their ability to optimize patient selection for treatment as they rely primarily on serum markers and radiologist-defined imaging features. Given the variation in treatment responses, an updated scoring system that includes multidimensional aspects of the disease, including quantitative imaging features, serum markers, and functional biomarkers, is needed to optimally triage patients. With the vast amounts of numerical medical record data and imaging features, researchers have turned to image-based methods, such as radiomics and artificial intelligence (AI), to automatically extract and process multidimensional data from images. The synthesis of these data can provide clinically relevant results to guide personalized treatment plans and optimize resource utilization. Machine learning (ML) is a branch of AI in which a model learns from training data and makes effective predictions by teaching itself. This review article outlines the basics of ML and provides a comprehensive overview of its potential value in the prediction of treatment response in patients with HCC after minimally invasive image-guided therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.222891DOI Listing

Publication Analysis

Top Keywords

imaging features
12
machine learning
8
hepatocellular carcinoma
8
minimally invasive
8
invasive image-guided
8
serum markers
8
learning predict
4
predict response
4
response image-guided
4
image-guided therapies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!